This lecture is based in part on, or inspired by,
slides/blogs/demos from:

* Rich Sutton, U Alberta [Sutton] http://incompleteideas.net/book/the-book-2nd.html

* Emma BrunskiII, Stanford [Brunskill] https://web.stanford.edu/class/cs234/index.html
David Silver, UCL [Silver] http://wwwO0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
Pieter Abbeel, UC Berkeley [Abbeel]

Sergey Levine, Chelsea Finn, John Schulman, UC Berkeley [UC Berkeley ]
Mark Schmidt, UBC [Schmidt]

* Andrej Karpathy [Karpathy] https://karpathy.github.io/2016/05/31/rl/

* Lillian Weng [Weng] https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html




Goals for this morning

* what is RL?
— what can it solve? how does it differ from other ML problems?

 why Deep RL, and some caveats

e RL basics

* RL algorithms
— Q-learning, DDPG, gradient-free methods, policy-gradient methods

* current perspectives



What is RL?
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[DeepMind] [Mobileye] [Anybotics]



Learn to make good sequences of decisions (Brunskill]

* Drive a car

* Defeat the world champion at Go

* Manage an investment portfolio

* Sequence a series of medical tests and interventions

* Control a power station or a chemical process to maximize revenue
* Make a humanoid robot walk

* Direct attention for a computer vision task

* Understand the role of dopamine in the brain



Defining good decisions: rewards

m Fly stunt manoeuvres in a helicopter

m +ve reward for following desired trajectory
m —ve reward for crashing

m Defeat the world champion at Backgammon
m +/—ve reward for winning/losing a game
m Manage an investment portfolio
m +ve reward for each $ in bank
m Control a power station

m +ve reward for producing power
m —ve reward for exceeding safety thresholds

m Make a humanoid robot walk

m +ve reward for forward motion
m —ve reward for falling over

m Play many different Atari games better than humans
m +/—ve reward for increasing/decreasing score

[Abbeel]



RL involves:
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optimization
— find an optimal way to make sequential decisions
delayed consequences
— decisions now can impact things much later, e.g., climate change

— challenge: temporal credit assignment is hard
(what caused later high or low rewards?)

— challenge: need to reason about long-term ramifications

exploration
— explore vs exploit tradeoff: try a new restaurant or go to one you already like?
— current policy impacts future data collection: potential instabilities

generalization
— impossible to visit all states during learning, e.g. image input to a policy

~[Brunskill]



Reinforcement Learning
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Discrete vs Continuous

 discrete states, discrete actions
—e.g., Go, Chess, tic-tac-toe
— “tabular” policies for small problems

e continuous states, discrete actions
—e.g., Atari games, DOTA, cart-and-pole

* continuous states, continuous actions
— robotics, process control, autonomous driving



The Many Faces of Reinforcement Learning

Computer Science

Engineering Neuroscience

Psychology

[Silver]

10



Branches of Machine Learning

latent structure,
labeled data
e.g., autoencoders

Supervised Unsupervised
Learning Learning

Machine
Learning

Reinforcement
Learning

[Silver]

scalar rewards over time



Simple Example: Backing up a Truck

input: 4 distances + cab-angle _ _

/T %

[“Learning to Steer on Winding Tracks Using Semi-Parametric Control Policies”, ICRA 2005]



Sim P le Exam D le state: 9 sensors x 3 values x 2 timesteps

actions: move in 5 directions
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[https://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html]
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OpenAl Gym  [gym.openai.com]

{
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Episode 7 Episode 1

CartPole-v1 MountainCar-vO

Berzerk-vO Bowling-ram-v0

Ant-v2 HalfCheetah-v2 Hopper-v2
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Why Deep RL?



AlphaZero (DeepMind)
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[DeepMind: Nature 2017]
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Aggressive autonomous driving  (Georgia Tech)

of a scale vehicle
[Georgia Tech: CoRL 2017]
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Rubik’s cube manipulation (OpenAl)
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Anymal: Quadrupedal locomotion + getup
(ETH Zurich)

Science Robotics, Special Issue on Learning-Beyond Immitation

Learning Agile and Dynamic Motor Skills
for Legged Robots

Jemin Hwangbo', Joonho Lee', Alexey Dosovitskiy?,
Dario Bellicoso!, Vassilios Tsounis', Vladlen Koltun?, Marco Hutter'
2018/08/16

1 Robotic Systems Lab, ETH Zurich, Switzerland

2 Intelligent Systems Lab, Intel

ETHziirich 2M3SL (intel)

www.rsl.ethz.ch Intelligent Systems Lab

[Science Robotics, 2018]
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[DeeplLoco: SIGGRAPH 2017]

Walking on Conveyor Belts
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Retargeting

and retarget to different environments.



simulated lion
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Physics-based Lion (UC Berkeley, UBC, Ziva Dynamics)

[“DeepMimic”, SIGGRAPH 2018]
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Cassie:Bipedal Locomotion (UBC, U Oregon, Agility Robotics)
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Why Deep RL? (continued)

End-to-end learning: performance benefits

Traditional approach

Lane Marking Path Control Steering

Image

Detection Planning Logic Angle

End to end learning

N Steering
&5
Self-optimized

[Chen and Huang, IV 2017]

“pixels to torques”
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Good control from rich sensory streams
is often the limiting factor

[https://robotik.dfki-bremen.de/en/research/robot-systems/exoskelett-aktiv-ca.html]
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How do humans and animals learn?
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Follow the money

* Alphabet invests ~ $S2B in DeepMind
* Microsoft invests S1B in OpenAl
* autonomous driving: Mobileye, Wayve, Waymo, Tesla, ...



Some Caveats



RL has a long history (by many names)

Computer Science

Mathematics l ' Psychology

Neuroscience

[Silver]
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Generic Algorithm?
Best results often still have domain knowledge

e domain knowledge
— defining: state, action, reward
— hyperparameters
— example expert data

but:
* no-free lunch: inductive bias needed for efficient learning

* progress is being made towards generalizable methods !
— AlphaZero (Go, Chess), DQN (Atari games), OpenAl five (DOTA game)



RL learning often has poor “sample efficiency”

* often far too slow to learn directly in the real world
- e.g., thousands of years in simulation (OpenAl hand)

* learning requires good simulation models, so not truly “model free”

* many newborn animals can walk within minutes or hours;
giraffe, horse foal, piglets, camels, zebra and more

but:
e compute is cheap

B e S e TR e

* nature: has done much learning on an evolutionary time scale; is similar
“transfer learning” possible for RL?
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Alternatives to RL

* Al planning: given a known model of how action impacts world
— e.g., searching through future game states

o lomiats : ' ‘
Imitation learning | {(827 az)}
— reduces RL to supervised learning from an expert
— collect data, learn policy @
— failure modes exist due to cumulative nature of errors a — 7T (S)

— combining imitation + RL is a promising direction



RL has very limited data to learn from

Y. LeCun

How Much Information is the Machine Given during Learning?

P “Pure” Reinforcement Learning (cherry)

» The machine predicts a scalar reward given once in a
while.

» A few bits for some samples

P> Supervised Learning (icing)

» The machine predicts a category or a few numbers
for each input

P Predicting human-supplied data
» 10—10,000 bits per sample

P> Self-Supervised Learning (cake génoise)

» The machine predicts any part of its input for any
observed part.

» Predicts future frames in videos
» Millions of bits per sample

© 2019 IEEE International Solid-State Circuits Conference 1.1: Deep Learning Hardware: Past, Present, & Future 59



RL can be difficult to apply in practice

Reinforcement Learning for Real Life

ICML 2019 Workshop

June 14, 2019, Long Beach, CA, USA
Production systems
Autonomous driving
Business management
Chemistry

Computer Systems
Energy

Healthcare

Robotics/manufacture
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“Challenges of Real-World
Reinforcement Learning”
[Dulac-Arnold et al.]

“ ... the research advances in RL are often hard to leverage
in real-world systems due to a series of assumptions that
are rarely satisfied in practice”

. Training off-line from the fixed logs of an external behavior policy.

. Learning on the real system from limited samples.

. High-dimensional continuous state and action spaces.

. Safety constraints that should never or at least rarely be violated.

. Tasks that may be partially observable ...

. Reward functions that are unspecified, multi-objective, or risk-sensitive.

. System operators who desire explainable policies and actions.

. Inference that must happen in real-time at the control frequency of the system.
. Large and/or unknown delays in the system actuators, sensors, or rewards.



Reprodicibility and Brittle Results

Deep Reinforcement Learning that Matters

Peter Henderson'*, Riashat Islam!*, Philip Bachman?
Joelle Pineau', Doina Precup!, David Meger’

I McGill University, Montreal, Canada “Unfortunately, reproducing results for
2 Mi ft Maluuba, M 1, Canad .
ierosolt Maluba, Monfred, Canada state-of-the-art deep RL methods is
In recent years, significant progress has been made in solving S el d om Str a | ghtf orwar d .”

challenging problems across various domains using deep re-
inforcement learning (RL). Reproducing existing work and
accurately judging the improvements offered by novel meth-
ods is vital to sustaining this progress. Unfortunately, repro-
ducing results for state-of-the-art deep RL methods is seldom
straightforward. In particular, non-determinism in standard
benchmark environments, combined with variance intrinsic
to the methods, can make reported results tough to interpret.
Without significance metrics and tighter standardization of
experimental reporting, it is difficult to determine whether im-
provements over the prior state-of-the-art are meaningful. In
this paper, we investigate challenges posed by reproducibility,
proper experimental techniques, and reporting procedures. We
illustrate the variability in reported metrics and results when
comparing against common baselines and suggest guidelines
to make future results in deep RL more reproducible. We aim
to spur discussion about how to ensure continued progress in
the field by minimizing wasted effort stemming from results
that are non-reproducible and easily misinterpreted.




