RL Basics

Reinforcement Learning — basics

r
state policy action environment
Vi
S s a
maximize Gt = Tt+1 + YTt4-2 + ... = Z’}/krt+k+1
k=0

“return”, cumulative discounted rewards

A Simple Solution to Learning a Policy:
Copy an expert “Imitation Learning”

Observe what an expert does, and try to copy it:

{(si,ai)}
[l

, a=m(s)
requires an expert
learned policy is unaware of the actual task (!)
suffers from compounding errors over time
* can be mitigated by collecting data during perturbations
transfer between two Deep-NN policies:

“policy distillation” “policy cloning”

Deep RL: key building blocks

policy methods actor critic methods value fn methods
(policy is implicit)
olicy
: S P a
p%_“CV a o S value fn V
S value fn |V4
a
: a e value fn @,
S policy

S value fn Q

Common Assumptions

* episodic tasks
— repeated interactions with the world e.g., games, trials
— begins from a standard starting state (or distribution of states)
— ends when reaching terminal state, or a fixed time T

e discounting: 7Y
— avoid infinite rewards when T=00
— summarize uncertainty abou the future
« stochastic policies: action probabilities 7(a|s) vs a = m(s)
- “smoothes”the learning, e.g., probability of playing a card, steering left, etc

— provides exploratory actions (for some algorithms)
— usually switch to deterministic policy once learning is complete

Common Assumptions

* Markov Property
— the future only depends on the current state, not the history

P[St+1 |St] — P[St+l |Sb ceey St]

 Markov Decision Process (MDP) vs

* Partially Observable Markov Decision Process (POMDP)
— state needs to be estimated; ‘belief state’

Laying the Foundations:
A Simple Deterministic Example

)

\ 4

)\ 4

43

Returns for a given sequence of decisions

e
N ;
6

\ 4

Start

S S
& &

NI N

o
Gt =rip1 +9Tt42 + o0 = Z’Yk?“t+k+1 Above we have 7 =1
k=0

D
o))
H
\ 4
o U
\ 4

44

Returns for a given sequence of decisions

16 el
Start 2 3
2

18 £ 3
0
G =18 4 5
6

O
k
Gy =11 +Y7rea9 + ... = E Y Tt k+1
k=0

v=0.9: G(start) =2+ (0.9)7 + (0.9)°4 + (0.9)°1 + (0.9)*4 ..

0

5
3 2
6

4 3
1 4
1
) 4

Above we have 7 =1

End

Returns for a given policy 7T

Assume that we begin in a random state, for this example, “exploring start”
and therefore we care about the returns from all states.

LN TN L
LRy
(e e A

0

oo v=1
G =Tes1 + V2 + o= YV rers
k=0

46

Returns for a given policy 7T

Given the known returns, now improve the policy

LR TR

7(s) < arg max Z[fr(s, a) +~vV(s")] v =1

Final improved policy

o
4

s

1 S
3 End

v¢

conceptual view

Terminology

» Generalized Policy Iteration

Vsey Ty

E: policy evaluation
78 V.

|: policy improvement optimal policy,

optimal value fn
V>l< 9 7T>l<

evaluation improve evaluation improve evaluation improve evaluation
)y ——> V,[O > T > Vm —_— D > oo > Ty ———> Ve

52

Terminology

* state value function V(s): VT('(S) = E, [Gt ’St = S]

— expected returns for a given state, under a given policy “how good is a state?”

— for our deterministic example, ‘/7T (8) — GW (S)
* value iteration, with bootstrapping:

Gt = Tregp1 +yrigo + 727“t+3 + 737“75+4 + ...
Gy =111+ Y(reg2 + Vg3 + 7 Te4a + -
Gy =141 +7Gr41

similarly for the value functions

for each iteration k
for each state s

Vk_|_1(8) =1r 4 ’}/Vk(sl) 6 2 4

— iterative value estimates depend on previous value estimates (!)

* prioritized sweeping: order updates based on size of expected change inV

Terminology

e discount factor 0 S Y S 1

— allows for continuing episodes, i.e., infinite length,
which would otherwise produce a potentially infinite return

— probability of episode continuing at any given time

— preference for current rewards over future rewards,
given that there may be more uncertainty about the future rewards

* experience tuples S /

a
(s,a,r,s) - >

— from state s, we took action a, and received reward r and ended in state s’

StOChaSﬁC Envi ronments dynamics function: p(s’,r|s1,a)

“state transition model”

r=1
a 0.2 O 52 when in state S and taking action aq
0.5 r=0,-1 what is the probability of ending up
S1 Q 0.3 Q S3 in state s’ and receiving reward T
as
O 84 /
. p(s 77“|817a1) next state reward
0.2 S9 1
() S5 0.4 53 0
VW(S) = E [Gt|St = S] 0.1 S3 -1
0.3 S -2
Vi et (5 Zp s',rls, a)[r + Vo r(s')] :

The value function provides the expected returns >

Common “backup diagram”

S ao

possible actions
T
a

distribution of state transitions,
r due to stochastic dynamics,
p with unique rewards
OO OO O Of

[Sutton, p81]

02 ") 82

0.5 r:o’-]_
0.3 O S3
r=-2

56

Model-based Model-free

CL1 ° 0.5 r=0 0/1 ° 27
51 0.3 () 83 51

a9 r=-2 a2

Ve kt1(s Zp s rls,a)[r +YVi k(8] VW(S) —]EW[Gt‘St = S]

model-based: aII state-transitions and rewards are known in advance, follow some known distribution
model-free: state-transitions and rewards are not known [therefore need to discover these thru experience!]
most basic RL: model-free); = More advanced: model-based methods learn an approximate modeI551;or p()

Determining the best returns for every state

(“Dynamic Programming” because the model is known)

58

“Bellman Backups”

(max(5+2,7+3)

R

\ 4
N

Final best returns for all states

60

Optimal Policy (implicit in optimal value fn)
value fn update: Vk_|_1(8) = max(r + ’ka(S/))

related implicit policy: 7Tt 1 (8) — arg max(r + ”VVk (3/))
a

Optimal Policy

AN o N
LN O (@\]
< (o)
4
N~ O

More Definitions

* Bellman backup: a local iterative improvement of the value function
- deterministic case: 1/ ; (5) — maX(r + nyk(S/))
a

— stochastic case: Vk+1(8) = maX(Z p(S/, T|S, CL) [7“(3, CL) =+ ’YVk(SI)]

Policy Objective Functions
(what is the overall thing that we wish to optimize?)

* episodic environments: use the start value

J1(0) = V™(s1) = Eny [vi]
e continuing environments, e.g., learning how to walk

— average value

Jawv(0) = Zd” (s)V™(s)

— average reward per time- step (largely equivalent; we’ll typically use this)

Jar(0) =) d™(s) > m(s,a)R2

) a

for a stochastic policy
~[Silver]

64

