RL Basics



Reinforcement Learning — basics
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“return”, cumulative discounted rewards



A Simple Solution to Learning a Policy:
Copy an expert  “Imitation Learning”

Observe what an expert does, and try to copy it:

{(si,ai)}
[l

, a=m(s)
requires an expert
learned policy is unaware of the actual task (!)
suffers from compounding errors over time
* can be mitigated by collecting data during perturbations
transfer between two Deep-NN policies:

“policy distillation” “policy cloning”



Deep RL: key building blocks
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Common Assumptions

* episodic tasks
— repeated interactions with the world e.g., games, trials
— begins from a standard starting state (or distribution of states)
— ends when reaching terminal state, or a fixed time T

e discounting: 7Y
— avoid infinite rewards when T=00
— summarize uncertainty abou the future
« stochastic policies: action probabilities 7(a|s) vs a = m(s)
- “smoothes”the learning, e.g., probability of playing a card, steering left, etc

— provides exploratory actions (for some algorithms)
— usually switch to deterministic policy once learning is complete



Common Assumptions

* Markov Property
— the future only depends on the current state, not the history

P[St+1 |St] — P[St+l |Sb ceey St]

 Markov Decision Process (MDP) vs

* Partially Observable Markov Decision Process (POMDP)
— state needs to be estimated; ‘belief state’



Laying the Foundations:
A Simple Deterministic Example
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Returns for a given sequence of decisions
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Returns for a given sequence of decisions
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Returns for a given policy 7T

Assume that we begin in a random state, for this example, “exploring start”
and therefore we care about the returns from all states.
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Returns for a given policy 7T




Given the known returns, now improve the policy

LR TR

7(s) < arg max Z[fr(s, a) +~vV(s")] v =1




Final improved policy
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conceptual view

Terminology

» Generalized Policy Iteration

Vsey Ty

E: policy evaluation
78 V.

|: policy improvement optimal policy,

optimal value fn
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Terminology

* state value function V(s): VT('(S) = E, [Gt ’St = S]

— expected returns for a given state, under a given policy “how good is a state?”

— for our deterministic example, ‘/7T (8) — GW (S)
* value iteration, with bootstrapping:

Gt = Tregp1 +yrigo + 727“t+3 + 737“75+4 + ...
Gy =111+ Y(reg2 + Vg3 + 7 Te4a + -
Gy =141 +7Gr41

similarly for the value functions

for each iteration k
for each state s

Vk_|_1(8) =1r 4 ’}/Vk(sl) 6 2 4

— iterative value estimates depend on previous value estimates (!)

* prioritized sweeping: order updates based on size of expected change inV



Terminology

e discount factor 0 S Y S 1

— allows for continuing episodes, i.e., infinite length,
which would otherwise produce a potentially infinite return

— probability of episode continuing at any given time

— preference for current rewards over future rewards,
given that there may be more uncertainty about the future rewards

* experience tuples S /

a
(s,a,r,s) - >

— from state s, we took action a, and received reward r and ended in state s’



StOChaSﬁC Envi ronments dynamics function: p(s’,r|s1,a)

“state transition model”

r=1
a 0.2 O 52 when in state S and taking action aq
0.5 r=0,-1 what is the probability of ending up
S1 Q 0.3 Q S3 in state s’ and receiving reward T
as
O 84 /
. p(s 77“|817a1) next state reward
0.2 S9 1
() S5 0.4 53 0
VW(S) = E [Gt|St = S] 0.1 S3 -1
0.3 S -2
Vi et (5 Zp s',rls, a)[r + Vo r(s')] :

The value function provides the expected returns >



Common “backup diagram”
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Model-based Model-free
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Ve kt1(s Zp s rls,a)[r +YVi k(8] VW(S) — ]EW[Gt‘St = S]

model-based: aII state-transitions and rewards are known in advance, follow some known distribution
model-free: state-transitions and rewards are not known [therefore need to discover these thru experience!]
most basic RL: model-free); = More advanced: model-based methods learn an approximate modeI551;or p()



Determining the best returns for every state

(“Dynamic Programming” because the model is known)
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“Bellman Backups”

(max( 5+2,7+3)
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Final best returns for all states
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Optimal Policy (implicit in optimal value fn)
value fn update: Vk_|_1(8) = max(r + ’ka(S/))

related implicit policy: 7Tt 1 (8) — arg max(r + ”VVk (3/))
a




Optimal Policy
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More Definitions

* Bellman backup: a local iterative improvement of the value function
- deterministic case: 1/ ; (5) — maX(r + nyk(S/))
a

— stochastic case: Vk+1(8) = maX(Z p(S/, T|S, CL) [7“(3, CL) =+ ’YVk(SI)]



Policy Objective Functions
(what is the overall thing that we wish to optimize?)

* episodic environments: use the start value

J1(0) = V™(s1) = Eny [vi]
e continuing environments, e.g., learning how to walk

— average value

Jawv(0) = Zd” (s)V™(s)

— average reward per time- step (largely equivalent; we’ll typically use this)

Jar(0) =) d™(s) > m(s,a)R2

) a

for a stochastic policy
~[Silver]
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