Policy-based Methods

policy methods actor critic methods value fn methods
(policy is implicit)

olicy
: S P a
g p%_“CY a w S value fn V
S value fn V
Policy Search Policy Gradient
Policy Gradient a value fn Q
Parameter-Exploring PG li a S
ploring a policy
d v DQON
S value fn Q

v/ DDPG



Why policy-based methods?

* to handle continuous actions

* good solutions can (sometimes) be described
using simple policies

112



Policy Search / Hill Climbing / Black Box / Evolutionary /
Gradient-Free / Derivative-Free Optimization /
Parameter-Exploring Policy Gradients

Optimize J(0) using the total episode returns

motion objective function
optimization )3
J(0)

0 policy
parameters

physics-
Controller based
simulation

simulation episode

113




Policy optimization problem

policy parameters:

Subject Parameters
Muscle physiology 3-30 *
Muscle geometry 12-39 *
State transition 3
Target features 14
Feedback control 14-63 *
Initial character state 6

objective:

E(K) — Espeed + Eheadori + Eheadvel + Eslide + Eeffort

114



Biomechanical Locomotion of Imaginary Creatures

Generation Generation Generation Generation
1 38 151 800

[Flexible Muscle-based Locomotion for Bipedal Creatures, SIGGRAPH ASIA 2013]



Optimization for Various Speeds




Moon Walk

Walking on the moon (g = 1.622 m/s?)




Robustness

3 Kg objects thrown at 5 m/s

118




Codesign of Body and Control

119



Example Gradient-Free Methods:

CEM: Cross Entropy Method
CMA: Covariance Matrix Adaptation



Treat the policy parameters directly as defining a high-dimensional search space.
Model the space of candidate solutions for a given generation using a

Normal (or multivariate Gaussian) distribution in this space.

Evaluate a sample population for their fitness, using 1+ episodes per candidate.
Keep a set of the best (“elite”) samples.

Move the distribution to fit those elite samples, i.e., maximum likelihood

repeat for the next generaﬁon Generation 1 Genratiz 7 Genrati3 7

Generation 4 Generation 5 Generation 6

CMA
[Wikipedia]




Cross-Entropy Method

0
t=0

Views U as a black box

Ignores all other information
other than U collected during
episode

= evolutionary algorithm

population: P, (0)

max U(f) = max E[z R(s¢)|mg]

CEM:
foriteri=1, 2, ...
for population membere=1, 2, ...
sample §(©) ~ P, (0)
execute roll-outs under Ty(e)
store (6®),U(e))
endfor

(i+1) — log P, (0®
u argmax » _log P, ()

where € indexes over top p %
endfor

[Abbeel] **




Cross-Entropy Method

s Can work embarrassingly well

Method Mean Score Reference
Nonreinforcement learning

Hand-coded 631,167 Dellacherie (Fahey, 2003)

Genetic algorithm 586,103 (BShm et al., 2004) Istvan Szita and Andrds Lorincz. “Learning
Reinforcement learning Tetris using the noisy cross-entropy method” .

Relational reinforcement ~50 Ramon and Driessens (2004) In: Neural computation 18.12 (2006),

learning+kernel-based regression pp. 2936-2941
Policy iteration 3183 Bertsekas and Tsitsiklis (1996) )
Least squares policy iteration <3000 Lagoudakis, Parr, and
Littman (2002)

Linear programming + Bootstrap 4274 Farias and van Roy (2006)

Natural policy gradient ~6800 Kakade (2001)

CE+RL 21,252

CE+RL, constant noise 72,705

CE+RL, decreasing noise 348,895

Approximate Dynamic Programming Finally

Performs Well in the Game of Tetris [N IPS 201 3]
Victor Gabillon Mohammad Ghavamzadeh® Bruno Scherrer
INRIA Lille - Nord Europe, INRIA Lille - Team SequeL INRIA Nancy - Grand Est,
Team SequeL., FRANCE & Adobe Research Team Maia, FRANCE

victor.gabillon@inria.fr mohammad.ghavamzadeh@inria.fr ~ bruno.scherrer@inria.fr John Schulman & Pieter Abbeel — OpenAl + UC Berkeley



Closely Related Approaches

Reward Weighted Regression (RWR)

CEM:
foriteri=1,2, ..
for population membere=1, 2, ... .
sample 9le) ~ P#(f,)(e) [u(z+1) — arg ml?xzq((](e), Pﬂ(a(e))) log P#(H(e))]

execute roll-outs under Ty (e)

I Dayan & Hinton, NC 1997; Peters & Schaal, ICML 2007

store (9(6), Ule)) = Policy Improvement with Path Integrals (PI?)
endfor = PI2: Theodorou, Buchli, Schaal IMLR2010; Kappen, 2007; (PI2-CMA: Stulp & Sigaud ICML2012)
,u("H) = arg maxz log PM(H(‘?‘))
_ G +1) _
where € indexes over top p % [“(z )= arg mf.xZexp()\U(e)) log P,(6') ]
endfor ) - < :
= Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES)
. CMA: Hansen & Ostermeier 1996; (CMA-ES: Hansen, Muller, Koumoutsakos 2003)
[(u(’“), £6D) = argmax 3 w(U(€)) og N (69 4, z)]
7> z
= PoWER

. Kober & Peters, NIPS 2007 (also applies importance sampling for sample re-use)

[Abbeel] [ UOHD 0 4 (zw@ - uw)v(e)) / (z U<e>) ]

e




Cross-Entropy / Evolutionary Methods

m Full episode evaluation, parameter perturbation
= Simple

= Main caveat: best when intrinsic dimensionality not too high

= i.e., number of population members comparable to or larger than number of
(effective) parameters

- in practice OK if low-dimensional 8 and willing to do do many runs

.y : ‘ |
- Easy-to-implement baseline, great for comparisons! (Abbeel]

125



Considerations

m Pros:

=  Work with arbitrary
parameterization, even non-

differentiable

= Embarrassingly easy to parallelize

m Cons:

= Not very sample efficient since
ignores temporal structure

«—— 18 cores, 657 minutes

Median time to solve (minutes)

102
101 1440 cores, 10 minutes —
102 103
Number of CPU cores

Figure 1. Time to reach a score of 6000 on 3D Humanoid with
different number of CPU cores. Experiments are repeated 7 times
and median time is reported.

[Salimans, Ho, Chen, Sutskever, 2017]



Policy Gradient Methods

policy methods

policy
=

S

S

actor critic methods
policy
T
value fn
policy
T

value fn

a

i

Q

value fn methods
(policy is implicit)

S value fn

a

e value fn
v DQN



Policy Gradient Algorithms



m Let J(6) be any policy objective function

m Policy gradient algorithms search for a
local maximum in J(€) by ascending the
gradient of the policy, w.r.t. parameters 6

Af = aVeJ(0)
m Where VyJ(0) is the policy gradient

0J(6)
001

Vod(0) = :
9J(6)
a0,

m and « is a step-size parameter

[Abbeel]

129



Computing the Policy Gradient
via finite-differences

0J(©) _ JO+ ew) — J(6)
00, €

* very slow
— one gradient computation requires n+1 policy evaluations for n policy parameters

* better idea: get a (noisy) policy gradient for each policy time step!



The intuition:

Consider a one-step reward problem
“make the sampled rewards more likely” 4

JT

— — steering

VoJ(0) = Er, [Vglog m(s, a)r]
gradient rewards
vectors

(score function)

Al = aVgJ(0)




Gradient wrt mean of log Normal distribution

N(:U) — L e_(za_;)
o\ 2T
1 —(z—p)?
VM IH(N(lC)) — v,u ln( e 202 )

o\ 2T
1 (z — p)°

=V, (—=In(2n0?) — 55 )

1
= — (@ —p)



Intuition in 2D for a symmetric Gaussian,

. . the blue arrows are just
m Policy is Gaussian, a ~ N (u(s), o2 .

y (,u,( )’ ) radial vectors from the mean
m The score function is action to the sampled action

(a=p()V i, (5)

Vg log 779(57 a) —

o>
samples x and (X) score function f p(X) after a parameter update
Vg log p(x)
for the mea

-1 -1

133



The math: Policy Gradient Theorem
Vol (0) = V0|:Z d™(s) ), Q. a)ﬂe(als)]

SES aceA

SES aceA

/4
x Z d”(s) Z Q" (s, a)Vomo(als) >this step uses Likelihood ratios - see below

X Z d”(S) Z QE(S, a) 7'('9(5, a)V9|Og7T0(S, a) =|E Lz_% Q”(S, a)Va log'ire(at I St)

SES aceA

m Likelihood ratios exploit the following identity d 1
E(ln(X)):;
v ( ) . ( )V0W0(57 a)
omo(s,a) = my(s, a o5, 2) d ) £7(x)
— (nf(x)) =% —
= mg(s,a)Vglog my(s, a) dx S (x)



Policy Gradient Derivation [Pieter Abbeel]

We let 7 denote a state-action sequence sg,ug,...,Sg,uyg. We overload
notation: R(7) = Zio R(s¢,ug).

In our new notation, our goal is to find 6:

max Uf) = mgxz P(1;0)R(T

135



U®)=>_ P(r;0)R(r
Taking the gradient w.r.t. 6 gives
VoU(0) = Vo Y _ P(r;0)R(r)

=Y VyP(r;0)R(r)

= Z ig:: z; VoP(1;0)R(T)

=3 Pr;0) o R

P(r;0)
=Y " P(7;60)Vylog P(r;0)R()

Approximate with the empirical estimate for m sample paths under policy
e

[Aleksandrov, Sysoyev, & Shemeneva, 1968] m

[Rubinstein, 1969] ]_ ( ) ( )
[G|Ynn; 1986]. . VQU(H % g=— E Vg lOg P(T ? ; e)R(T 7 )
[Reinforce, Williams 1992] m

[GPOMDP, Baxter & Bartlett, 2001] =1

[Abbeel]

136



[Abbeel]

= Valid even when
= Ris discontinuous and/or unknown

= Sample space (of paths) is a discrete set

137



[Abbeel]

1 <& . .
VU(O) ~g=— Y Volog P(r; 0)R(7")

m Gradient tries to:

= Increase probability of paths with
positive R

= Decrease probability of paths with
negative R

I Likelihood ratio changes probabilities of experienced paths,
does not try to change the paths (<-> Path Derivative)

138



Importance Sampling

curen = g, (100)

139



Derivation from Importance Sampling [Abbeel]

P(r|6)
P(T|901d)R(T)]

U(e) = E7’~001d |:

Vo P(7|0)
P(7(0014) R(T)]

VQU(Q) — E’rweo]d |:

Vo P(7]0)],
Vo U0)lo=0,1s = Erntaa | —5 G |9old)0ld R(T)]

= E7—~001d Vg log P(T|0) |9old R(T)}

140



Decomposing path into state sequences

Vo log P(7(V); )

=V log HP8t+1 (z) gi)).im

dynamlcs model policy

=V ZlogP 3%21 OIS —I—Zlogw

t=0

Z yQ log Uy’ (ugz) Ing))J

(ug”|s;”)

S

20

[Abbeel]

141



[Abbeel]

The following expression provides us with an unbiased estimate of the gradient,
and we can compute it without access to a dynamics model:

1 m
— Vo log P(r(®): 0 (4)
2 Valog P(r % 0)R(r)

Here:

Vo log P(T (3). ;0) Z Vg log 7o (u )]s(i))

no dynamics model required!!

Unbiased means:
E[g] = VoU ()

142



REINFORCE

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for .

Input: a differentiable policy parameterization 7(als, )
Algorithm parameter: step size a > 0

Initialize policy parameter 8 € R% (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,S7—1,A7r_1, R, following 7(-|-,0)
Loop for each step of the episode t =0,1,...,7T — 1:
G YT, At (Gy)
0 < 0+ ay'GVInw(AsS:, 0)

[Sutton Barto, p328] 143



Policy gradient methods maximize the expected total reward by repeatedly estimating the gradient
g = VgE[>.;2,t]. There are several different related expressions for the policy gradient, which
have the form

o0
g=E Z U Vg logme(as | st)| , (1)
t=0 Many choices of
where ¥; may be one of the following: “compatible” rewards
1. Y70 e total reward of the trajectory. 4. Q™ (s¢,aq): state-action value function.
2. Y o, ry: reward following action a;. 5. A™(st,a): advantage function.
3. Yoo, Te — b(sy): baselined version of
previous formula. 6. 7 + V™ (st+1) — V7 (s¢): TD residual.

The latter formulas use the definitions

VW(St) = ]ESta-I{-t]'_:oo, lz rt+l] Q’l‘r(st, at) = ]EsH-l:oo, lz Tt+l] (2)
> 1=0

At4+1:00
=0

A" (s¢,at) = Q" (s¢,a1) — V7™ (st), (Advantage function). 3)
[Schulman 2016] 14



Various Policy Gradient Algorithms

 REINFORCE: use Monte Carlo policy returns

1. Initialize 8 at random
2. Generate one episode S1,A1, Ry, 82, A2, ..., ST
3.Fort=1,2,...,T:
1. Estimate the the return G_t since the time step t.
2.0 « 0+ ay'G,V In n(A;|S;, ).

145



Actor-Critic Policy Gradient Algorithm

One-step Actor—Critic (episodic), for estimating 7 ~ .,

Input: a differentiable policy parameterization 7 (als, @)
Input: a differentiable state-value function parameterization o(s,w)
Parameters: step sizes a® > 0, o™ > 0
Initialize policy parameter @ € RY and state-value weights w € R? (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

I<+1
Loop while S is not terminal (for each time step):
A~ 7(-|S,0)
Take action A, observe S’, R
d < R+ ~0(S",w) — 0(S,w) (if S’ is terminal, then 9(S’,w) = 0)

W< w+aVoVo(S,w)
0+ 0+a°15Vinm(A|S,0)
I+ ~I

S« S 146




Policy Gradient Demos

[Farzad Abdolhosseini]
https://observablehq.com/@farzadab/policy-gradients

Automatic Training @: Train  stop

Manual Training ®Z Start Train Session Step Training

11

r (reward Functf
m (policy)

147



What's in a step-size?

m Terrible step sizes, always an issue, but how about just not so
great ones?

m Supervised learning

= Step too far = next update will correct for it

m Reinforcement learning

= Step too far = terrible policy
= Next mini-batch: collected under this terrible policy!

= Not clear how to recover short of going back and shrinking the step size [Abbeel]

The following methods propose ways of avoiding unsafe step sizes:
TRPO: Trust-Region Policy Optimization
PPO: Proximal Policy Optimization



[Schulman]

Reducing reinforcement learning to optimization

» Much of modern ML: reduce learning to numerical optimization problem
» Supervised learning: minimize training error
» RL: how to use all data so far and compute the best policy?
» Q-learning: can (in principle) include all transitions seen so far, however,
we're optimizing the wrong objective
» Policy gradient methods: yes stochastic gradients, but no optimization

problem*
» This lecture: write down an optimization problem that allows you to do a

small update to policy 7 based on data sampled from 7w (on-policy data)

149



[Schulman]
What Loss to Optimize?
» Policy gradients
g =K, [V@ log mg(a; | st)AAt]
» Can differentiate the following loss  [practical implementation with Autodiff]
LPS(9) = &, [Iog mo(ar | st)f\t] .
but don't want to optimize it too far

» Equivalently differentiate

LS (e)zﬁt[ mo(3e | st) Z\t].

0o
t T6,a(at | St)
at 0 = 6)q, state-actions are sampled using 6,14. (IS = importance sampling)

Vor©l, f(6)
Oola  f(0ola) - = V6’('6(901d)>

Just the chain rule: Vg log f(6)|

Oo1d



Optimization Methods

* Line search methods
— find direction
- select step length

* Trust region methods
— fix the max step length (defines the “trust region”)
— find best point in that region
— locally approximate objective f: linear or quadratic



[Schulman]

Trust Region Policy Optimization

» Define the following trust region update:

mo(ar | st) 4 ]
7.reold(at | St) t
subject to  E[KL[mg_. (- | st), mo(- | s¢)]] <.

N

maxiemize E; [

» Also worth considering using a penalty instead of a constraint

7T9(at | St)
7T901d(at | St

)A\t:| - /B]Et[KL[ﬂ-Oold(' | St)7 7T9(' | St)]]

maxi@mize E; [

» Method of Lagrange multipliers: optimality point of d-constrained problem
is also an optimality point of 3-penalized problem for some 8.

» In practice, o is easier to tune, and fixed J is better than fixed
152



Trust Region Policy Optimization: Pseudocode

» Pseudocode:
for iteration=1,2,... do
Run policy for T timesteps or N trajectories
Estimate advantage function at all timesteps

mo(an | Sn) A
maX|m|ze Z n
ﬂ-eold(an | 5,,)

subject to KL, (m) <9

end for

[Schulman]

» Can solve constrained optimization problem efficiently by using conjugate

gradient

» Closely related to natural policy gradients (Kakade, 2002), natural actor

critic (Peters and Schaal, 2005), REPS (Peters et al., 2010)

153



[Schulman]

“Proximal” Policy Optimization: KL Penalty Version

» Use penalty instead of constraint

ﬂ-e(an | Sn ’\ -
— C-KL
maX|m|ze E o (2] 5,) A, 7o, (1)

» Pseudocode:

for iteration=1,2,... do
Run policy for T timesteps or N trajectories
Estimate advantage function at all timesteps
Do SGD on above objective for some number of epochs
If KL too high, increase 8. If KL too low, decrease £.
end for

» ~~ same performance as TRPO, but only first-order optimization
154



[Schulman]

Limitations of TRPO

» Hard to use with architectures with multiple outputs, e.g. policy and value
function (need to weight different terms in distance metric)

» Empirically performs poorly on tasks requiring deep CNNs and RNNs, e.g.
Atari benchmark
» CG makes implementation more complicated

155



[Schulman]

Proximal Policy Optimization: Clipping Objective

» Recall the surrogate objective

[5() = f& [ mo(a | st)
O) = e, (el )

f\t] ~ &, [rt(e)f\t] (1)

» Form a lower bound via clipped importance ratios

LELP(g) = R, [min(rt(e)f\t, clip(r:(0),1 — €,1 + e)A“t)] (2)

0.12
0.10
0.08
0.06 -
0.04

0.02 -

0.00

-0.02

Linear interpolation factor

—— EdKL]

—— LP =ErAdl

—— Edclip(r, 1 — €, 1+ €)A]

—— LCUP = E[min(reAy, clip(re, 1 — €, 1 + €)A0)]

» Forms pessimistic bound on objective, can be optimized using SGD

156



PyTorch Implementation

prob = Fnn.softmax(pi)
log_prob = Fnn.log_softmax(pi)

action_prob = prob.gather(1, action) LCUP(Q) — ]Et [min(rt(ﬁ)f\t, C|ip(rt(9)’ 1 — €, 1+ E)AAt)]

prob_old = Fnn.softmax(pi_old)
action_prob_old = prob_old.gather(1, action)

ratio = action_prob / (action_prob_old + 1le-10)

advantage = (advantage - advantage.mean()) / (advantage.std() + 1le-5)

surrl = ratio * advantage
surr2 = torch.clamp(ratio, min=1. - clip, max=1. + clip) * advantage
policy loss = -torch.min(surrl, surr2).mean()

157



Interpreting the PPO objective

[OpenAl: https://spinningup.openai.com/en/latest/algorithms/ppo.html]

mo(als)

m,(als)’

positive advantage L(s,a,6,0) = min ( (1+ e)) A™% (s, a)

. mg(als) )
L(s,a,0;,0) = max (1 —€) | A™(s,a
negative advantage (5, a,0k,0) (M(a|s) (1—¢) (s, a)

What we have seen so far is that clipping serves as a regularizer by removing incentives for the
policy to change dramatically, and the hyperparameter € corresponds to how far away the new
policy can go from the old while still profiting the objective.

158



[Schulman]

Proximal Policy Optimization

» Pseudocode:

for iteration=1,2,... do

Run policy for T timesteps or N trajectories

Estimate advantage function at all timesteps

Do SGD on L“P(6) objective for some number of epochs
end for

» A bit better than TRPO on continuous control, much better on Atari

» Compatible with multi-output networks and RNNs

159



SUMMARY

policy methods actor critic methods value fn methods
(policy is implicit)
olicy
: S P a
p%_“CV a o S value fn V
S value fn |V4

Gradient-Free
Policy Gradients

value fn Q

»wQ

e policy a
n DQN

S value fn Q

DDPG



Practical Advice for working with RL

Techniques from supervised learning don’t necessarily work in RL:
— batch norm, dropout, big networks

* use small test problems; experiment quickly

* interpret and visualize the learning process: state visitation, value fn
* new task? make it easier until there are signs of life

* env design: visualize random policy

* explore sensitivity to parameters

* use multiple random # seeds

e automate experiments; consider using cloud computing

* much more at the link below

~[Schulman https://drive.google.com/file/d/0BxX|l RttTZAhc2ZsbINVUHhGZDA/view]




Local minina

* RL can (and will often) get stuck in local minima

* mitigate this via
— sufficient exploration
— early termination
— reward shaping
— entropy bonus
— demonstrations



Rewards functions in theory and practice

1 if walker is running
0 otherwise

1 if object at target
0 otherwise

o) = { e = |

T‘(X, u) = - wl”pgripper(x) — Pobject (X)||2+ T(X, u) :wlv(x)—l—
- w2||p0bject (X) - ptargct(x)”2+ w25(|0t0rso(x)| < €)+

—_ w3||u||2 w35(htorso(x) > h)

[Levine]

163



Another view of policy gradients

Our first generic candidate for solving reinforcement learning is Policy
Gradient. 1 find it shocking that Policy Gradient wasn’t ruled out as a bad idea
in 1993. Policy gradient is seductive as it apparently lets one fine tune a
program to solve any problem without any domain knowledge. Of course,
anything that makes such a claim must be too general for its own good.
Indeed, if you dive into it, policy gradient is nothing more than random
search dressed up in mathematical symbols and lingo.

Lots of papers have been applying policy gradient to all sorts of different
settings, and claiming crazy results, but I hope that it is now clear that they
are just dressing up random search in a clever outfit. When you end up with a
bunch of papers showing that genetic algorithms are competitive with your
methods, this does not mean that we've made an advance in genetic
algorithms. It is far more likely that this means that your method is a lousy
implementation of random search.

[An Outsider’s Tour of Reinforcement Learning

http://www.argmin.net/2018/06/25/outsider-rl/ - Ben Recht] o




Simple random search of static linear policies is
competitive for reinforcement learning

Horia Mania Aurelia Guy Benjamin Recht
hmania@berkeley.edu lia@berkeley.edu brecht@berkeley.edu

Department of Electrical Engineering and Computer Science
University of California, Berkeley

165



Policy Gradient changes the objective

maximize,, R(u) S maximizep(u)

Ey|R(u))

I don't think I can overemphasize the point that policy gradient and RL are not
magic. I'd go as far as to say that policy gradient and its derivatives are
legitimately bad algorithms. In order to make them work well, you need lots of
tricks. Algorithms which are hard to tune, hard to reproduce, and don't
outperform off the shelf genetic algorithms are bad algorithms.

[An Outsider’s Tour of Reinforcement Learning

http://www.argmin.net/2018/06/25/outsider-rl/ - Ben Recht] 100




Intuition in 2D for a symmetric Gaussian,

. . the blue arrows are just
m Policy is Gaussian, a ~ N (u(s), o2 .

y (,u,( )’ ) radial vectors from the mean
m The score function is action to the sampled action

(a=p()V i, (5)

Vg log 779(57 a) —

o>
samples x and (X) score function f p(X) after a parameter update
Vg log p(x)
for the mea

-1 -1

137



