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Basic Model-based RL

Initialize Q(s,a) and Model(s,a) for all s € 8§ and a € A(s)
Loop forever:
(a) S « current (nonterminal) state
(b) A+ e-greedy(S, Q)
(c) Take action A; observe resultant reward, R, and state, S’
(d) Q(Sa A) — Q(S) A) +a [R + 7y max, Q(S,a a’) o Q(Sa A)]
(e) Model(S,A) + R, S’ (assuming deterministic environment)
(f) Loop repeat n times:
S <+ random previously observed state
A < random action previously taken in §
R, S’ < Model(S, A)
Q(S, A) + Q(S, A) + a[R + ymax, Q(S’,a) — Q(S, A)]

value/policy
acting
planning direct
RL
model experience
model
learning

[Sutton, pl64] .,



Algorithm 1 Model-based Reinforcement Learning

1: gather dataset Dranp Of random trajectories A use of dynamics:
2: initialize empty dataset Dg;, and randomly initialize fo A L o
3. for iter=1 to max_iter do St+1 = St + f9 (St7 at)-

4 train fp (s, a) by performing gradient descent on Eqn.
using Draxp and Dy

5: fort=1toT do
6 get agent S current state s
7: use f() to estimate optimal action sequence A( )
(Eqn. 4
8: execute ﬁrst action a; from selected action sequence
A
t
9: add (s¢, ay) to Dy
10: end for DATA POINTS AGENT —
11: end for CHENE Y
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Forward Simulation on Half-Cheetah
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Fig. 5: Given a fixed sequence of controls, we show the resulting true rollout
(solid line) vs. the multi-step prediction from the learned dynamics model
(dotted line) on the half-cheetah agent. Although we learn to predict certain
elements of the state space well, note the eventual divergence of the learned
model on some state elements when it is used to make multi-step open-loop
predictions. However, our MPC-based controller with a short horizon can
succeed in using the model to control an agent.
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Fig. 6: Analysis of design decisions for our model-based reinforcement learning approach. (a) Training steps, (b) dataset training split, (c) horizon and
number of actions sampled, (d) initial random trajectories. Training for more epochs, leveraging on-policy data, planning with medium-length horizons and
many action samples were the best design choices, while data aggregation caused the number of initial trajectories that have little effect.
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Swimmer Half Cheetah
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Fig. 6: Analysis of design decisions for our model-based reinforcement learning approach. (a) Training steps, (b) dataset training split, (c) horizon and
number of actions sampled, (d) initial random trajectories. Training for more epochs, leveraging on-policy data, planning with medium-length horizons and
many action samples were the best design choices, while data aggregation caused the number of initial trajectories that have little effect.
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Model-based + Model-free

* train with model-based MPC method, as described

* imitation learning
— intialize a learned policy using behavior cloning
— iterative policy training (DAGGER)

o perform on-policy roll-outs
o query MPC “expert” for the “true” actions for the visited states

* fine-tune using model-free RL, e.g., policy gradient with TRPO
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Fig. 7: Using the standard Mujoco agent’s reward function, our model-based
method achieves a stable moving-forward gait for the swimmer using 20 X
fewer data points than a model-free TRPO method. Furthermore, our hybrid
Mb-MTf method allows TRPO to achieve its max performance 3 X faster than
for TRPO alone.
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Cumulative Reward
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