papers

Table of Contents

1 Inverse kinematics and character posing

1.1 Style-based Inverse Kinematics, SIGGRAPH 2004

http://grail.cs.washington.edu/projects/styleik/ Grochow, Keith, Steven L. Martin, Aaron Hertzmann, and Zoran Popović. "Style-based inverse kinematics." In ACM Transactions on Graphics (TOG), vol. 23, no. 3, pp. 522-531. ACM, 2004.

1.2 Intuitive Interactive human character posing with millions of example poses, IEEE CG&A 2011

1.3 The Line of Action: an Intuitive Interface for Expressive Character Posing, SIGGRAPH ASIA 2013

https://hal.inria.fr/hal-00861503/file/LOA_SA2013.pdf Guay, Martin, Marie-Paule Cani, and Rémi Ronfard. "The line of action: an intuitive interface for expressive character posing." ACM Transactions on Graphics (TOG) 32, no. 6 (2013): 205.

2 Performance Animation

2.1 Motion doodles: an interface for sketching character motion, SIGGRAPH 2002

http://www.cs.ubc.ca/~van/papers/2004-siggraph-motiondoodles.pdf Thorne, Matthew, David Burke, and Michiel van de Panne. "Motion doodles: an interface for sketching character motion." In ACM SIGGRAPH 2007 courses, p. 24. ACM, 2007.

2.2 Performance-Based Control Interface for Character Animation, SIGGRAPH 2009

http://www.cc.gatech.edu/~karenliu/Performance.html Ishigaki, Satoru, Timothy White, Victor B. Zordan, and C. Karen Liu. "Performance-based control interface for character animation." In ACM Transactions on Graphics (TOG), vol. 28, no. 3, p. 61. ACM, 2009.

2.3 Spatial Keyframing for performance-driven animation, SCA 2005

http://cs.brown.edu/people/jfh/papers/Igarashi-SKF-2005/paper.pdf Igarashi, Takeo, Tomer Moscovich, and John F. Hughes. "Spatial keyframing for performance-driven animation." In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 107-115. ACM, 2005.

2.4 Tangible and modular input device for character articulation, 2014

http://people.inf.ethz.ch/~dpanozzo/papers/puppet-2014-etech.pdf Jacobson, Alec, Daniele Panozzo, Oliver Glauser, Cédric Pradalier, Otmar Hilliges, and Olga Sorkine-Hornung. "Tangible and modular input device for character articulation." In ACM SIGGRAPH 2014 Emerging Technologies, p. 24. ACM, 2014.

3 Motion Graphs

3.1 Motion Graphs, SIGGRAPH 2002

http://research.cs.wisc.edu/graphics/Papers/Gleicher/Mocap/mograph.pdf Kovar, Lucas, Michael Gleicher, and Frédéric Pighin. "Motion graphs." In ACM Transactions on Graphics (TOG), vol. 21, no. 3, pp. 473-482. ACM, 2002.

3.2 Interactive motion generation from examples, SIGGRAPH 2002

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.139.2984&rep=rep1&type=pdf Arikan, Okan, and David A. Forsyth. "Interactive motion generation from examples." In ACM Transactions on Graphics (TOG), vol. 21, no. 3, pp. 483-490. ACM, 2002.

3.3 Interactive Control of Avatars Animated with Human Motion Data, SIGGRAPH 2002

http://mrl.snu.ac.kr/research/ProjectAvatar/avatar.html Lee, Jehee, Jinxiang Chai, Paul SA Reitsma, Jessica K. Hodgins, and Nancy S. Pollard. "Interactive control of avatars animated with human motion data." In ACM Transactions on Graphics (TOG), vol. 21, no. 3, pp. 491-500. ACM, 2002.

4 Motion Editing

4.1 Relationship Descriptors for Interactive Motion Adaptation, SCA 2013

http://homepages.inf.ed.ac.uk/tkomura/rami_SCA2013.pdf Al-Asqhar, Rami Ali, Taku Komura, and Myung Geol Choi. "Relationship descriptors for interactive motion adaptation." In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 45-53. ACM, 2013.

4.2 A hierarchical approach to interactive motion editing for human-like figures, SIGGRAPH 1999

http://mrl.snu.ac.kr/research/ProjectMoedit/moedit.htm Lee, Jehee, and Sung Yong Shin. "A hierarchical approach to interactive motion editing for human-like figures." In Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pp. 39-48. ACM Press/Addison-Wesley Publishing Co., 1999.

4.3 Motion Warping, SIGGRAPH 1995

http://www.cs.washington.edu/homes/zoran/warpage/warpage.pdf Witkin, Andrew, and Zoran Popovic. "Motion warping." In Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, pp. 105-108. ACM, 1995.

4.4 Real-time motion retargeting to highly varied user-created morphologies

http://chrishecker.com/images/c/cb/Sporeanim-siggraph08.pdf Hecker, Chris, Bernd Raabe, Ryan W. Enslow, John DeWeese, Jordan Maynard, and Kees van Prooijen. "Real-time motion retargeting to highly varied user-created morphologies." In ACM Transactions on Graphics (TOG), vol. 27, no. 3, p. 27. ACM, 2008.

5 Advanced Motion Graphs and Motion controllers using kinematic motion clips

5.1 Construction and optimal search of interpolated motion graphs, TOG 2007

http://reports-archive.adm.cs.cmu.edu/anon/anon/usr0/ftp/usr/ftp/2007/CMU-CS-07-106.pdf Safonova, Alla, and Jessica K. Hodgins. "Construction and optimal search of interpolated motion graphs." In ACM Transactions on Graphics (TOG), vol. 26, no. 3, p. 106. ACM, 2007.

5.2 Motion graphs++: a compact generative model for semantic motion analysis and synthesis, TOG 2012

http://faculty.cs.tamu.edu/jchai/projects/sigrapha-asia-12/graph/a153-min.pdf Min, Jianyuan, and Jinxiang Chai. "Motion graphs++: a compact generative model for semantic motion analysis and synthesis." ACM Transactions on Graphics (TOG) 31, no. 6 (2012): 153.

5.3 Physically-Valid Statistical Models for Human Motion Generation, TOG 2011

http://faculty.cse.tamu.edu/jchai/projects/TOG-data-physics-2011/physics-data-final.pdf Wei, Xiaolin, Jianyuan Min, and Jinxiang Chai. "Physically valid statistical models for human motion generation." ACM Transactions on Graphics (TOG) 30, no. 3 (2011): 19.

5.4 Motion fields for interactive character locomotion, SIGGRAPH 2010

http://grail.cs.washington.edu/projects/motion-fields/ Lee, Yongjoon, Kevin Wampler, Gilbert Bernstein, Jovan Popović, and Zoran Popović. "Motion fields for interactive character locomotion." In ACM Transactions on Graphics (TOG), vol. 29, no. 6, p. 138. ACM, 2010.

5.5 Near-optimal Character Animation with Continuous Control, SIGGRAPH 2007

http://grail.cs.washington.edu/projects/graph-optimal-control/ Treuille, Adrien, Yongjoon Lee, and Zoran Popović. "Near-optimal character animation with continuous control." In ACM Transactions on Graphics (TOG), vol. 26, no. 3, p. 7. ACM, 2007.

6 Physics-based models of character motion

6.1 Learning Bicycle Stunts, SIGGRAPH 2014

http://www.cc.gatech.edu/~jtan34/project/learningBicycleStunts.html Tan, Jie, Yuting Gu, C. Karen Liu, and Greg Turk. "Learning Bicycle Stunts." ACM TRANSACTIONS ON GRAPHICS 33, no. 4 (2014).

6.2 Optimal gait and form for animal locomotion, TOG 2009

http://grail.cs.washington.edu/projects/animal-morphology/s2009/Optimal_Gait_and_Form_for_Animal_Locomotion.pdf Wampler, Kevin, and Zoran Popović. "Optimal gait and form for animal locomotion." ACM Transactions on Graphics (TOG) 28, no. 3 (2009): 60.

6.3 Multiobjective control with frictional contacts, SCA 2007

http://homes.cs.washington.edu/~jovan/papers/abe-2007-mcf.pdf Abe, Yeuhi, Marco da Silva, and Jovan Popović. "Multiobjective control with frictional contacts." In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 249-258. Eurographics Association, 2007.

6.4 Synthesis of detailed hand manipulation using contact sampling, SIGGRAPH 2012

http://yutingye.info/SIG12.html Ye, Yuting, and C. Karen Liu. "Synthesis of detailed hand manipulations using contact sampling." ACM Transactions on Graphics (TOG) 31, no. 4 (2012): 41.

6.5 Flexible Muscle-Based Locomotion for Bipedal Creatures, SIGGRAPH ASIA 2013

http://www.cs.ubc.ca/~van/papers/2013-TOG-MuscleBasedBipeds/index.html Geijtenbeek, Thomas, Michiel van de Panne, and A. Frank van der Stappen. "Flexible muscle-based locomotion for bipedal creatures." ACM Transactions on Graphics (TOG) 32, no. 6 (2013): 206.

6.6 SIMBICON: Simple Biped Locomotion Control, SIGGRAPH 2007

http://www.cs.ubc.ca/~van/papers/Simbicon.htm Yin, KangKang, Kevin Loken, and Michiel van de Panne. "Simbicon: Simple biped locomotion control." In ACM Transactions on Graphics (TOG), vol. 26, no. 3, p. 105. ACM, 2007.

6.7 Spacetime constraints, SIGGRAPH 1988

http://www.cs.cmu.edu/~cga/dynopt-14/witkin/figures.pdf Witkin, Andrew, and Michael Kass. "Spacetime constraints." In ACM Siggraph Computer Graphics, vol. 22, no. 4, pp. 159-168. ACM, 1988.

6.8 Physically-based Motion Transformation, SIGGRAPH 1999

https://homes.cs.washington.edu/~zoran/sigg99/ Popović, Zoran, and Andrew Witkin. "Physically based motion transformation." In Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pp. 11-20. ACM Press/Addison-Wesley Publishing Co., 1999.

6.9 Discovery of complex behaviors through contact-invariant optimization, TOG 2012

http://homes.cs.washington.edu/~todorov/papers/MordatchSIGGRAPH12.pdf Mordatch, Igor, Emanuel Todorov, and Zoran Popović. "Discovery of complex behaviors through contact-invariant optimization." ACM Transactions on Graphics (TOG) 31, no. 4 (2012): 43.

6.10 Locomotion skills for simulated quadrupeds, TOG 2011

http://www.cs.ubc.ca/~van/papers/2011-TOG-quadruped/paper.pdf Coros, Stelian, Andrej Karpathy, Ben Jones, Lionel Reveret, and Michiel Van De Panne. "Locomotion skills for simulated quadrupeds." In ACM Transactions on Graphics (TOG), vol. 30, no. 4, p. 59. ACM, 2011.

7 Perception of motion

7.1 fMRI and the Uncanny Valley, 2011

Saygin, Ayse Pinar, Thierry Chaminade, Hiroshi Ishiguro, Jon Driver, and Chris Frith. "The thing that should not be: predictive coding and the uncanny valley in perceiving human and humanoid robot actions." Social cognitive and affective neuroscience (2011): nsr025. https://quote.ucsd.edu/sayginlab/files/2013/01/SayginEtAl_2012_SCAN.pdf

7.2 Perception of Human Motion, Annual Rev. Psychology 2007

Blake, Randolph, and Maggie Shiffrar. "Perception of human motion." Annu. Rev. Psychol. 58 (2007): 47-73. http://www.cs.princeton.edu/courses/archive/spring08/cos598B/Readings/BlakeShiffrar_2007.pdf

7.3 Perception of human motion with different geometric models, 1998

Hodgins, Jessica K., James F. O'Brien, and Jack Tumblin. "Perception of human motion with different geometric models." Visualization and Computer Graphics, IEEE Transactions on 4.4 (1998): 307-316.

7.4 Obscuring length changes during animated motion, TOG 2004

http://cs.ubc.ca/~van/papers/2004-siggraph-lengthchange.pdf Harrison, Jason, Ronald A. Rensink, and Michiel Van De Panne. "Obscuring length changes during animated motion." In ACM Transactions on Graphics (TOG), vol. 23, no. 3, pp. 569-573. ACM, 2004.

7.5 Person identification from biological motion: Effects of structural and kinematic cues, Perception & Psychophysics, 2005

http://130.15.96.239/Text/Troje_PP05.pdf Troje, Nikolaus F., Cord Westhoff, and Mikhail Lavrov. "Person identification from biological motion: Effects of structural and kinematic cues." Perception & Psychophysics 67, no. 4 (2005): 667-675.

8 Capture of Shape and Motion

8.1 Scape: shape completion and animation of people, SIGGRAPH 2005

http://ai.stanford.edu/~drago/Projects/scape/scape.html Anguelov, Dragomir, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers, and James Davis. "Scape: shape completion and animation of people." In ACM Transactions on Graphics (TOG), vol. 24, no. 3, pp. 408-416. ACM, 2005.

8.2 MoSh: Motion and Shape Capture from Sparse Markers, SIGGRAPH ASIA 2014

http://ps.is.tuebingen.mpg.de/project/MoSh Loper, Matthew, Naureen Mahmood, and Michael J. Black. "MoSh: motion and shape capture from sparse markers." ACM Transactions on Graphics (TOG) 33, no. 6 (2014): 220.

8.3 Leveraging depth cameras and wearable pressure sensors for full-body kinematics and dynamics capture, SIGGRAPH ASIA 2014

Zhang, Peizhao, Kristin Siu, Jianjie Zhang, C. Karen Liu, and Jinxiang Chai. "Leveraging depth cameras and wearable pressure sensors for full-body kinematics and dynamics capture." ACM Transactions on Graphics (TOG) 33, no. 6 (2014): 221. Leveraging Depth Cameras and Wearable Pressure Sensors for Full-body Kinematics and Dynamics Capture http://students.cse.tamu.edu/stzpz/SA14/index.html

8.4 Videomocap: modeling physically realistic human motion from monocular video sequences, TOG 2010

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.297.4384&rep=rep1&type=pdf Wei, Xiaolin, and Jinxiang Chai. "Videomocap: modeling physically realistic human motion from monocular video sequences." ACM Transactions on Graphics (TOG) 29, no. 4 (2010): 42.

8.5 Performance animation from low-dimensional control signals, TOG 2005

http://graphics.cs.cmu.edu/projects/performance-animation/jchai_pa.pdf Chai, Jinxiang, and Jessica K. Hodgins. "Performance animation from low-dimensional control signals." In ACM Transactions on Graphics (TOG), vol. 24, no. 3, pp. 686-696. ACM, 2005.

9 Facial capture and animation

9.1 A morphable model for the synthesis of 3D faces, SIGGRAPH 1999

http://www.cs.ucf.edu/courses/cap6412/fall2008/papers/p187-blanz.pdf Blanz, Volker, and Thomas Vetter. "A morphable model for the synthesis of 3D faces." In Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pp. 187-194. ACM Press/Addison-Wesley Publishing Co., 1999.

9.2 Controllable high-fidelity facial performance transfer, TOG 2014

video: http://research.microsoft.com/apps/video/default.aspx?id=226501 paper: http://dl.acm.org/citation.cfm?id=2601210 (access from UBC network) Xu, Feng, Jinxiang Chai, Yilong Liu, and Xin Tong. "Controllable high-fidelity facial performance transfer." ACM Transactions on Graphics (TOG) 33, no. 4 (2014): 42.

9.3 Realtime Facial Animation With On-the-fly Correctives, TOG 2013

video: https://www.youtube.com/watch?v=X7y2RZdyZK0 paper: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.383.2915&rep=rep1&type=pdf Li, Hao, Jihun Yu, Yuting Ye, and Chris Bregler. "Realtime facial animation with on-the-fly correctives." ACM Trans. Graph. 32, no. 4 (2013): 42.

9.4 High resolution passive facial performance capture, TOG 2010

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.228.9423&rep=rep1&type=pdf Bradley, Derek, Wolfgang Heidrich, Tiberiu Popa, and Alla Sheffer. "High resolution passive facial performance capture." ACM Transactions on Graphics (TOG) 29, no. 4 (2010): 41.

10 Skinning

10.1 Automatic rigging and animation of 3d characters, TOG 2007

http://groups.csail.mit.edu/graphics/pubs/baran-2007-ara.pdf Baran, Ilya, and Jovan Popović. "Automatic rigging and animation of 3d characters." In ACM Transactions on Graphics (TOG), vol. 26, no. 3, p. 72. ACM, 2007.

10.2 Building efficient, accurate character skins from examples, TOG 2003

http://research.cs.wisc.edu/graphics/Gallery/SkinFromExamples/skin-from-examples.pdf Mohr, Alex, and Michael Gleicher. "Building efficient, accurate character skins from examples." In ACM Transactions on Graphics (TOG), vol. 22, no. 3, pp. 562-568. ACM, 2003.

10.3 Skinning Mesh Animations, TOG 2005

http://graphics.stanford.edu/courses/cs468-05-fall/Papers/p399-james.pdf James, Doug L., and Christopher D. Twigg. "Skinning mesh animations." In ACM Transactions on Graphics (TOG), vol. 24, no. 3, pp. 399-407. ACM, 2005.

Date: 2015-02-03T22:34-0800

Author: Michiel van de Panne

Org version 7.9.3f with Emacs version 24

Validate XHTML 1.0