
Control Methods (for movement skills)

CPSC 526 Sept-Dec 2017

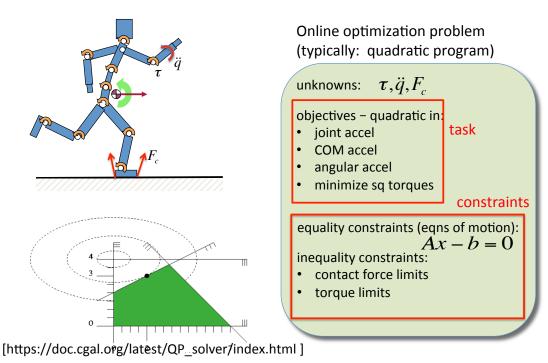
"Can you fly that thing?" "Not yet ..."

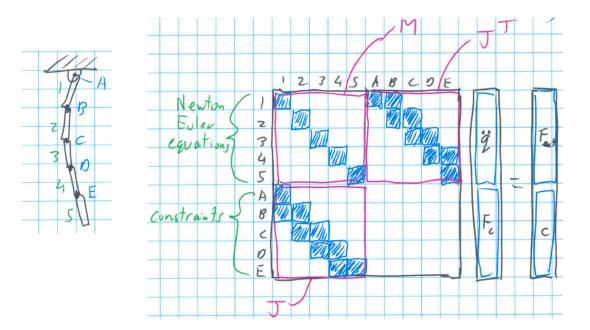
Overview

- Trajectory Optimization
 - spacetime constraints (offline)
 - model-predictive control (online)
- QP-based inverse dynamics
 - QP to solve for torques
 - many humanoid robots
- Direct policy search
 - derivative-free optimization to find the best controller

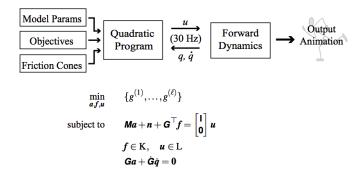
- Value-based RL
 - value function and policy learned over all states
- Guided Learning
 - supervised learning of policy
 - iterate data-collection & learning as needed

Trajectory Optimization


- Spacetime Constraints (1988)
 - simple system; regular discrete time samples (later: splines)
- Physically Based Motion Transformation (1999)
 human motions (with reduced dynamics models)
 - Adaptation of Doutermood Dallistic Mation (200
- Adaptation of Performed Ballistic Motion (2005)
 - full dynamics models, scaling of unknowns, stay close to a reference motion
- Online Trajectory Optimization (2012)
 - finite horizon lookahead, differentiable dynamics through contacts
- Contact Invariant Optimization (2012)
 - can discover best contact phases to use
- Online Motion Synthesis Using Sequential Monte Carlo (2015)
 - finite horizon method, model-free


Trajectory Optimization – Online Version (MPC: Model Predictive Control)

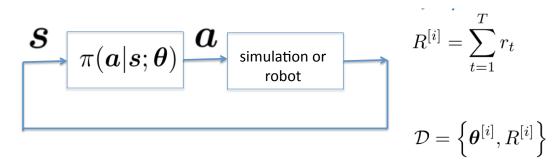
optimize k step "finite horizon", then execute 1 step


QP-based inverse dynamics

Multiobjective Control with Frictional Contacts, SCA 2007 (video)

System Overview

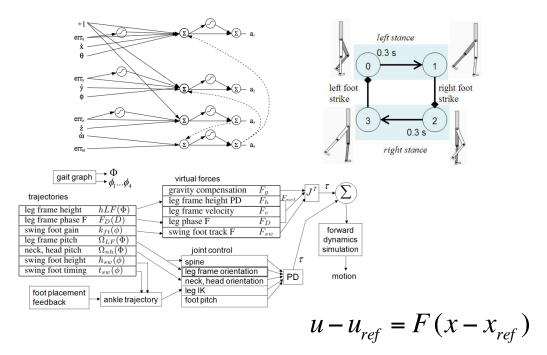
Feature-Based Locomotion Control, SIGGRAPH 2010


DARPA Robotics Challenge (DRC, 2015)

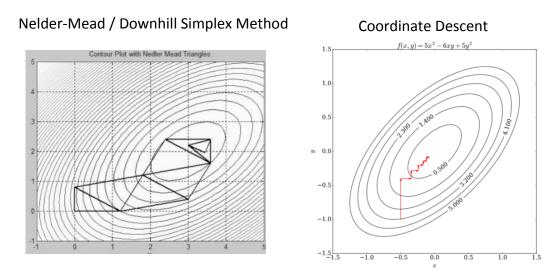
- Multi-level optimization:
 - Footstep Optimization (Discrete + Continuous)
 - Trajectory Optimization (Continuous)
 - Optimization-Based Inverse Dynamics: Greedy continuous optimization (Quadratic Program = QP) for full body at the current instant.

[DARPA Robotics Challenge, www.cs.cmu.edu/~cga/dw]

Direct Policy Search

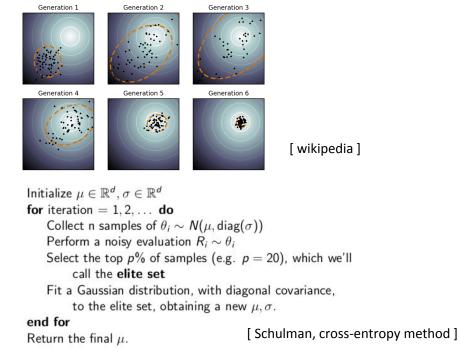


Repeat


- **1. Explore:** Generate trajectories $oldsymbol{ au}^{[i]}$ following the current policy π_k
- 2. Evaluate: Assess quality of trajectory or actions
- **3.** Update: Compute new policy π_{k+1} from trajectories and evaluations

Until convergence

Control Policy Parameterizations



Derivative Free Optimization ("Black box optimization")

Others: Simultaneous Perturbation Stochastic Approximation (SPSA), Parameter Exploring Policy Gradient Simulated Annealing

Covariance Matrix Adaptation (CMA) / Cross Entropy method (CEM)

Overview

- Trajectory Optimization
 - spacetime constraints (offline)
 - model-predictive control (online)
- QP-based inverse dynamics
 - QP to solve for torques
 - many humanoid robots
- Direct policy search
 - derivative-free optimization to find the best controller

- Value-based RL
 - value function and policy learned over all states
- Guided Learning
 - supervised learning of policy
 - iterate data-collection & learning as needed