
DLL Injection and  
x86 Hooking Demystified

Giorgio Gori

Sources:

What is a DLL?  
https://support.microsoft.com/en-ca/kb/815065
Windows DLL Injection Basics by Brad Antoniewicz  
http://blog.opensecurityresearch.com/2013/01/windows-dll-injection-basics.html
x86 API Hooking Demystified by Jurriaan Bremer  
http://jbremer.org/x86-api-hooking-demystified/

https://support.microsoft.com/en-ca/kb/815065
http://blog.opensecurityresearch.com/2013/01/windows-dll-injection-basics.html
http://jbremer.org/x86-api-hooking-demystified/

What is a DLL?

A DLL - Dynamic Link Library - is a library that
contains code and data that can be used by
more than one program at the same time.

• Uses fewer resources

• Promotes modular architecture

• Eases deployment and installation

Creating a DLL
BOOL	APIENTRY	DllMain(HANDLE	hModule,		
				DWORD	ul_reason_for_call,	LPVOID	lpReserved)	{	

				switch	(ul_reason_for_call)	{	
								case	DLL_PROCESS_ATTACHED:	//	A	process	is	loading	the	DLL.	
								case	DLL_THREAD_ATTACHED:		//	A	process	is	creating	a	new	thread.	
								case	DLL_THREAD_DETACH:				//	A	thread	exits	normally.	
								case	DLL_PROCESS_DETACH:			//	A	process	unloads	the	DLL.	
								break;	
				}	

				return	TRUE;	
}	

extern	__declspec(dllexport)	void	HelloWorld()	{	
	 MessageBox(NULL,	TEXT("Hello	World"),	TEXT("In	a	DLL"),	MB_OK);	
}

Using a DLL
• Load-time dynamic linking 

Provide a header (.h) and library (.lib) at compile
and link time. Linker will provide information to
resolve the DLL functions at load time.

#include	"MyDLL.h"	

int	main()	{				
				HelloWorld();	
				return	0;	
}

Using a DLL
• Run-time dynamic linking 

Call LoadLibrary(...) and GetProcAddress(...) at
run time, then call the function by address.

int	main()	{	
				HMODULE	dll	=	LoadLibrary("MyDLL.dll");	
				if	(dll	!=	NULL)	{	
								FARPROC	HelloWorld	=	GetProcAddress(dll,	"HelloWorld");	
								if	(HelloWorld	!=	NULL)	
												HelloWorld();	

								FreeLibrary(dll);	
				}	
				return	0;	
}

DLL Injection

Invoke LoadLibrary from the target process

Create a Thread, use LoadLibrary as entry
point, and the dll path as argument

DLL Injection

1. Attach to the target process.

2. Allocate memory within the process.

3. Copy DLL path into the process memory and
find LoadLibrary address.

4. Execute your DLL.

DLLMain Thread

main thread

main thread

main thread

main thread

Target ProcessInjector
Threads 1..nAttach1.

Threads 1..nAllocate Memory2.

Threads 1..n

C:\... .dll

Copy DLL / Determine Addr3.

Threads 1..n

C:\... .dll

Execute4.

Threads 1..n

OpenProcess();

VirtualAllocEx();

WriteProcessMemory();
GetProcAddress(..., "LoadLibrary")

CreateRemoteThread(process_handle,  
..., LoadLibraryPtr, PathPtr, ...);

DLL Proxying, DLL Hijacking

• Both work by impersonating the legitimate DLL
and (typically) relaying functionality to it. They
can be used both to extend functionality and as
a malicious attack vector.

• Proxying: Rename the legitimate DLL, replace
with your own.

• Hijacking: Abuse Windows' DLL Search order to
load your DLL before the legitimate one.

DLL Injection: Why?

• Read and write process memory

• Execute custom code, invoke existing functions

• Patch binary code, add hooks

x86 Hooking
Change the byte code to alter the execution.
Common uses include:
• Debugging.
• Profiling.
• Extending functionality.
• Execute general "on event" code.

function_A: 
0x401000: push ebp 
0x401001: mov ebp, esp 
0x401003: sub esp, 0x40 
0x401006: push ebx 
0x401007: mov ebx, dword [esp+0x0c] 
...

function_A: 
0x401000: push ebp 
0x401001: mov ebp, esp 
0x401003: sub esp, 0x40 
0x401006: push ebx 
0x401007: mov ebx, dword [esp+0x0c] 
...

function_A: 
0x401000: jmp function_B 
0x401005: nop 
0x401006: push ebx 
0x401007: mov ebx, dword [esp+0x0c] 
...

Stolen Bytes

Stolen Bytes

function_A: 
0x401000: jmp function_B 
0x401005: nop 
0x401006: push ebx 
0x401007: mov ebx, dword [esp+0x0c]

function_B: 
0x401800: push ebp 
0x401800: mov ebp, esp 
0x401800: sub esp, 0x40 
0x401800: ... snip ... 
0x401820: call function_A_gate 
0x401825: ... snip ... 
0x401836: retn

function_A_gate: 
0x402000: push ebp 
0x402001: mov ebp, esp 
0x402003: sub esp, 0x40 
0x402006: jmp function_A + 6

• Game does not support clickable links. Players
have to click, select, copy, paste in web browser.

• We follow the call from the input handler to the  
UI creation.

• Hook the function that 
creates the UI element.

• Open in web browser 
if the name is a URL.

Hooking example

Original Function

.text (Code)

Registers

Stack
Dump / Heap

Stolen Bytes

Hooked Function

Detour Start

Detour End

Gate

Stolen Bytes

DirectX EndScene Hooking
Game Mods Steam Overlay

Performance Monitors FPS Counters

Sources:

What is a DLL?  
https://support.microsoft.com/en-ca/kb/815065
Windows DLL Injection Basics by Brad Antoniewicz  
http://blog.opensecurityresearch.com/2013/01/windows-dll-injection-basics.html
x86 API Hooking Demystified by Jurriaan Bremer  
http://jbremer.org/x86-api-hooking-demystified/

Other topics include:
• Advanced / Stealth injection techniques
• Integrity of execution during hook installation
• Hook restoration / cleanup
• Hooking detection (anti-cheat) and advanced hooking methods
• Multiple layers of hooks
• Prevent hook recursion
• Hooking different calling conventions and class methods

DLL injection and x86 hooking demystified

https://support.microsoft.com/en-ca/kb/815065
http://blog.opensecurityresearch.com/2013/01/windows-dll-injection-basics.html
http://jbremer.org/x86-api-hooking-demystified/

