
C++ Roast
P R E S E N T E D BY T I M S T R AU B I N G E R

•A Brief History of C++

•Gentle Introduction to C++ with Examples and by Trial & Error
• …and what a terrible idea that will prove to be

•The Dark Side of C++

•Why Compilation is Terrible

•Templates

•Weird Syntax

•Types

•Memory

•Strings

•Ease of Over-Engineering

•Historical Baggage

•Hidden Pitfalls

Today’s Agenda

A Brief History of C++

C++ began being
invented in 1979 by
Danish computer
scientist
Bjarne Stroustrup

Bjarne Stroustrup is a humble man.

Bjarne does not want to tell you
what to do.

Bjarne wants to empower you to do
anything you can imagine.

And Bjarne trusts you to know right
from wrong.

Bjarne Stroustrup (Inventor of C++)

“Many C++ design decisions have their roots in
my dislike for forcing people to do things in
some particular way [...] Often, I was tempted
to outlaw a feature I personally disliked, I
refrained from doing so because I did not
think I had the right to force my views on
others.”

The Design and
Evolution of C++

“I left out operator overloading as a fairly
personal choice because I had seen too many
people abuse it in C++.”

http://www.gotw.ca/publications/c_family_int
erview.htm

versus James Gosling (Inventor of Java)

http://www.gotw.ca/publications/c_family_interview.htm

C++ is Not Done Being Invented

1980 2020201020001990

C with
Classes C++ C++98 C++03 C++11 C++14 C++20

Stone
Age ???

0

500

1000

1500

2000

Length of C++ Language Standard (in pages)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

C++

Java

JavaScript

C

Rust

Racket

Python

Length of Language Specification (Number of Pages)

Recent Versions of C++
C++11
• Fundamentally changed the

language to allow more
efficient resource
management

• First gave any meaning at all
to multithreaded code

•Made templates go from
slightly nuts to completely
nuts (variadic templates)

C++14
•Not much happened

• You can write binary numbers
now: 0b1011

C++17
•A few things happened

• It’s now really easy to write
code that runs before your
code ever runs

• First gave any meaning at all
to the file system

•Made templates even more
nuts (fold expressions)

C++20
• Fundamentally changes how

you use algorithms (ranges)

• Fundamentally changes how
you package and reuse code
(modules)

•Adds the spaceship operator
<=>

• First appearance of time and
date in C++

• First gave any meaning at all
to endianness

•Makes templates a little more
sane

Gentle Introduction to C++
WITH EXAMPLES AND BY TRIAL & ERROR

Hello World: Attempt 1

Hello World: Attempt 2

How to Concatenate Strings

How to Concatenate Strings

How to Concatenate Strings

How to Concatenate Strings

How to Concatenate Strings

How to Convert Numbers to Strings

How to Convert
Numbers to Strings
That’s kind of verbose…

How to Convert
Numbers to Strings
Why not convert it directly to a
char*?

Working with
Numbers
C++ has numbers for every occasion

Numbers for Every Occasion
•short

•short int

•signed short

•signed short int

•unsigned short

•unsigned short int

•int

•signed

•signed int

•unsigned

•unsigned int

•long

•long int

•signed long

•signed long int

•unsigned long

•unsigned long int

•long long

•long long int

•signed long long

•signed long long int

•unsigned long long

•unsigned long long int

•signed char

•unsigned char

•char

•wchar_t

•char8_t

•char16_t

•char32_t

•float

•double

•long double

•std::size_t

•std::ptrdiff_t

•std::intptr_t

•std::uintptr_t

•std::int8_t

•std::int16_t

•std::int32_t

•std::int64_t

•std::int_fast8_t

•std::int_fast16_t

•std::int_fast32_t

•std::int_fast64_t

•std::int_least8_t

•std::int_least16_t

•std::int_least32_t

•std::int_least64_t

•std::intmax_t

•std::uint8_t

•std::uint16_t

•std::uint32_t

•std::uint64_t

•std::uint_fast8_t

•std::uint_fast16_t

•std::uint_fast32_t

•std::uint_fast64_t

•std::uint_least8_t

•std::uint_least16_t

•std::uint_least32_t

•std::uintmax_t

•std::streamoff

•std::streamsize

Note: std::byte
is not a number!

Working with
Numbers
Numbers don’t need initial values

(compiled with –O0 on g++)

Working with
Numbers
Increase your compiler’s optimization level to
get better numbers

(compiled with –O1 on g++)

Working with
Numbers
Try a different compiler and see what works best
for you

(compiled with –O2 on clang++)

Working with
Numbers
Printing whitespace can have its consequences.

(compiled with –O2 on clang++)

Which of these Numbers is smaller?

main.cpp: In function 'int main()':

main.cpp:4:33: error: no matching function for call to 'min(double, int)'

4 | std::cout << std::min(2.5, 3);

| ^

In file included from /usr/local/include/c++/9.2.0/bits/char_traits.h:39,

from /usr/local/include/c++/9.2.0/ios:40,

from /usr/local/include/c++/9.2.0/ostream:38,

from /usr/local/include/c++/9.2.0/iostream:39,

from main.cpp:1:

/usr/local/include/c++/9.2.0/bits/stl_algobase.h:198:5: note: candidate: 'template<class _Tp> constexpr const _Tp& std::min(const

_Tp&, const _Tp&)'

198 | min(const _Tp& __a, const _Tp& __b)

| ^~~

/usr/local/include/c++/9.2.0/bits/stl_algobase.h:198:5: note: template argument deduction/substitution failed:

main.cpp:4:33: note: deduced conflicting types for parameter 'const _Tp' ('double' and 'int')

4 | std::cout << std::min(2.5, 3);

| ^

In file included from /usr/local/include/c++/9.2.0/bits/char_traits.h:39,

from /usr/local/include/c++/9.2.0/ios:40,

from /usr/local/include/c++/9.2.0/ostream:38,

from /usr/local/include/c++/9.2.0/iostream:39,

from main.cpp:1:

/usr/local/include/c++/9.2.0/bits/stl_algobase.h:246:5: note: candidate: 'template<class _Tp, class _Compare> constexpr const

_Tp& std::min(const _Tp&, const _Tp&, _Compare)'

246 | min(const _Tp& __a, const _Tp& __b, _Compare __comp)

| ^~~

/usr/local/include/c++/9.2.0/bits/stl_algobase.h:246:5: note: template argument deduction/substitution failed:

main.cpp:4:33: note: deduced conflicting types for parameter 'const _Tp' ('double' and 'int')

4 | std::cout << std::min(2.5, 3);

| ^

The Entire
Error Message

Macros to the
Rescue!
Hey, that works way better!

Macros to the
Rescue!
Let’s replace min with product

Reading User Input

if statements
JavaScript is not the only place where things get “truthy”

Let’s
Introduce
Functions

Let’s
Introduce
Functions

Return
Values
are
Optional

Return
Values
are
Optional

Functions
Can Be
Used
Anywhere

Compiled with –O2 on g++

Functions
Can Be
Used
Anywhere

Compiled with –O0 on clang++

How to Pass Arguments to a Function
PASS BY VALUE (DEFAULT) PASS BY REFERENCE (NOTE THE &)

How to Return from a Function
RETURN BY VALUE RETURN BY REFERENCE (NOTE THE &)

Functions can
be Overloaded
Multiple functions can have the
same name in C++ as long as
they accept different
arguments.

The correct function will be
chosen using the type of the
argument you pass.

Arrays

Arrays

Arrays

Passing
Arrays to
Functions

Passing
Arrays to
Functions

Dynamic Memory
Allocation
Yay! It works

Dynamic Memory
Allocation
What’s that? Don’t use
malloc()? Okay, fine.

Dynamic Memory
Allocation
What’s that? I should use “smart
pointers” instead of new? Okay,
fine.

Dynamic Memory
Allocation
What’s that? I still need to allocate
memory? std::unique_ptr
doesn’t do my work for me? That’s
dumb.

Guess I’d better free the memory
myself too, to avoid memory leaks.

The Dark Side of C++

Undefined Behavior
•“Renders the entire program meaningless if certain rules of the language are violated.” [1]

•“There are no restrictions on the behavior of the program” [1]

•“Compilers are not required to diagnose undefined behavior […], and the compiled
program is not required to do anything meaningful.” [1]

•“Because correct C++ programs are free of undefined behavior, compilers may produce
unexpected results when a program that actually has UB is compiled with optimization
enabled” [1]

•If a program encounters UB when given a set of inputs, there are no requirements on its
behavior “not even with regard to operations preceding the first undefined operation” [2]

[1] https://en.cppreference.com/w/cpp/language/ub [2] C++20 Working Draft, Section 4.1.1.5

https://en.cppreference.com/w/cpp/language/ub

Undefined Behavior in Simpler Terms
If you do something wrong, literally anything can happen when your code runs.

This includes:
• Your code runs and does nothing

• Your code runs as you expect it to

• Your code crashes with a helpful error message

• Your code crashes for no explainable reason

• Your code runs as you expect it to, but fails horribly on a different compiler, different
computer, different day, etc

• Your code passes all tests, but hackers can steal your passwords

• Demons come flying out of your nose

Undefined Behavior in the C++ Standard
• The word “undefined” appears 278 times in the latest C++ Standard Draft

• That’s not all:

• “Undefined behavior may be expected when this document omits any
explicit definition of behavior or when a program uses an erroneous
construct or erroneous data”

Examples of Undefined Behavior
• Reading from an uninitialized variable (Note: most variables are uninitialized by default)

• Reading an array out of bounds (Note: you are usually responsible for knowing the array’s size)

• Forgetting to put a newline at the end of a source code file (until C++11)

• Dereferencing the null pointer

• Dereferencing a pointer that does not point to an object of the pointer’s type

• Returning a pointer or reference to a local variable

• Signed integer overflow (Note: this probably causes most C++ programs in existence to have UB)

• Infinite loops with no side effects

Using
Undefined
Behavior for
Great Good

Why Compilation is
Terrible
INTRODUCING THE PREPROCESSOR

The Preprocessor in C++
The C++ preprocessor is a token-replacing program that modifies your source code during lexical
analysis.

The preprocessor has no concept of C++ syntax or grammar.

The preprocessor is blind to the syntax, semantics, and scoping rules of C++.

Every sensible programmer hates the C++ preprocessor passionately.

It is also the standard way to combine and reuse source code!

Preprocessor Basics: #define

Object-like macro
(token is removed from source code)

Object-like macro
(token is replaced in source code)

Preprocessor Basics: #define
Function-like macro
(token is replaced with list of tokens
and arguments are substituted)

product(2, 1 + 1)

is replaced with:
2 * 1 + 1

There is no encapsulation

min(2.5, 3)

is replaced with:
2.5 < 3 ? 2.5 : 3

Expressions are evaluated twice!

Preprocessor Basics: #define

https://stackoverflow.com/a/653028

https://stackoverflow.com/a/653028

Macros are Blind. Macros are Evil.
A header file by Microsoft for Windows development defines two macros: min and max

This was a very bad idea.

How #includeworks
When the preprocessor encounters a line like this:

#include “foo.h”

It literally copies and pastes the contents of that file verbatim!

file pi.h
3.141592654

file main.cpp
int main(){

std::cout << “There are “ << (180.0 /

#include “pi.h”

) << “ degrees per radian”;

}

This forces the compiler to frequently recompile every #included file.
Files are typically big and include lots of other files recursively. This can
cause compilation times to skyrocket.

Templates

Function Templates: Quick Intro

Note: print<int> and print<double> are fundamentally different entities

Template
Specialization
Because every instantiation of a template with
different template arguments is a different
entity, you can specialize templates for a certain
type

Template
Specialization
Because every instantiation of a
template with different template
arguments is a different entity, you
can specialize templates for a
certain type.

But this only works for one type at
a time.

What if we want to, say, have one
function for any integer and
another function for everything
else?

Template
Specialization:
S.F.I.N.A.E. Tricks
How real C++ developers overload
templates

Templates can Create Really Complicated Types
Many standard containers are templates.

This is std::vector, a resizable container:

template<class T, class Allocator<T> = std::allocator<T>>

class vector;

By default, this uses T twice.

This sort of thing can lead to an exponential explosion of type complexity as you start nesting
things.

Templates can Create Really Complicated Types
Code that looks like this to you:

// 3D array of integers (could be used to represent a tensor)

std::vector<std::vector<std::vector<int>>>

actually looks like this to the compiler:
(and to you, once you need to read error messages)

std::vector<std::vector<std::vector<int, std::allocator<int> >,

std::allocator<std::vector<int, std::allocator<int> > > >,

std::allocator<std::vector<std::vector<int, std::allocator<int>

>, std::allocator<std::vector<int, std::allocator<int> > > > > >

I Found This Type While Profiling Code
boost::asio::detail::executor_op<boost::asio::detail::binder2<boost::asio::detail::write_op<boost::asio::basic_stream_socket<boost::asio::ip
::tcp>,boost::beast::buffers_cat_view<boost::asio::mutable_buffer,boost::beast::buffers_prefix_view<boost::beast::buffers_suffix<std::vector
<boost::asio::const_buffer,std::allocator<boost::asio::const_buffer> > > >
>,boost::beast::buffers_cat_view<boost::asio::mutable_buffer,boost::beast::buffers_prefix_view<boost::beast::buffers_suffix<std::vector<boos
t::asio::const_buffer,std::allocator<boost::asio::const_buffer> > > >
>::const_iterator,boost::asio::detail::transfer_all_t,boost::beast::websocket::stream<boost::asio::basic_stream_socket<boost::asio::ip::tcp>
>::write_some_op<std::vector<boost::asio::const_buffer,std::allocator<boost::asio::const_buffer>
>,boost::asio::executor_binder<std::_Binder<std::_Unforced,void (__cdecl wsserver::session::*)(boost::system::error_code,unsigned __int64)
__ptr64,std::shared_ptr<wsserver::session>,std::_Ph<1> const & __ptr64,std::_Ph<2> const &
__ptr64>,boost::asio::strand<boost::asio::io_context::executor_type> > > >,boost::system::error_code,unsigned
__int64>,std::allocator<void>,boost::asio::detail::scheduler_operation>::executor_op<boost::asio::detail::binder2<boost::asio::detail::write
_op<boost::asio::basic_stream_socket<boost::asio::ip::tcp>,boost::beast::buffers_cat_view<boost::asio::mutable_buffer,boost::beast::buffers_
prefix_view<boost::beast::buffers_suffix<std::vector<boost::asio::const_buffer,std::allocator<boost::asio::const_buffer> > > >
>,boost::beast::buffers_cat_view<boost::asio::mutable_buffer,boost::beast::buffers_prefix_view<boost::beast::buffers_suffix<std::vector<boos
t::asio::const_buffer,std::allocator<boost::asio::const_buffer> > > >
>::const_iterator,boost::asio::detail::transfer_all_t,boost::beast::websocket::stream<boost::asio::basic_stream_socket<boost::asio::ip::tcp>
>::write_some_op<std::vector<boost::asio::const_buffer,std::allocator<boost::asio::const_buffer>
>,boost::asio::executor_binder<std::_Binder<std::_Unforced,void (__cdecl wsserver::session::*)(boost::system::error_code,unsigned __int64)
__ptr64,std::shared_ptr<wsserver::session>,std::_Ph<1> const & __ptr64,std::_Ph<2> const &
__ptr64>,boost::asio::strand<boost::asio::io_context::executor_type> > > >,boost::system::error_code,unsigned
__int64>,std::allocator<void>,boost::asio::detail::scheduler_operation><boost::asio::detail::binder2<boost::asio::detail::write_op<boost::as
io::basic_stream_socket<boost::asio::ip::tcp>,boost::beast::buffers_cat_view<boost::asio::mutable_buffer,boost::beast::buffers_prefix_view<b
oost::beast::buffers_suffix<std::vector<boost::asio::const_buffer,std::allocator<boost::asio::const_buffer> > > >
>,boost::beast::buffers_cat_view<boost::asio::mutable_buffer,boost::beast::buffers_prefix_view<boost::beast::buffers_suffix<std::vector<boos
t::asio::const_buffer,std::allocator<boost::asio::const_buffer> > > >
>::const_iterator,boost::asio::detail::transfer_all_t,boost::beast::websocket::stream<boost::asio::basic_stream_socket<boost::asio::ip::tcp>
>::write_some_op<std::vector<boost::asio::const_buffer,std::allocator<boost::asio::const_buffer>
>,boost::asio::executor_binder<std::_Binder<std::_Unforced,void (__cdecl wsserver::session::*)(boost::system::error_code,unsigned __int64)
__ptr64,std::shared_ptr<wsserver::session>,std::_Ph<1> const & __ptr64,std::_Ph<2> const &
__ptr64>,boost::asio::strand<boost::asio::io_context::executor_type> > > >,boost::system::error_code,unsigned __int64> >

Weird Syntax

a is an Array of pointers to functions returning
pointers to functions returning pointers to
char

char *(*(*a[])())()

signal is a function passing an int and a
pointer to a function passing an int
returning nothing (void) returning a pointer
to a function passing an int returning
nothing (void)

void (*signal(int, void (*fp)(int)))(int);

http://c-faq.com/decl/spiral.anderson.html

http://c-faq.com/decl/spiral.anderson.html

An immediately-invoked lambda
returning void

[](){}()

Alternative
Tokens
In Case You
Can’t Type [
or {

Ease of Over-Engineering

How to pass a single
int to a function
You have many choices

Note: a few of these will be ambiguous

How to pass many
ints to a function
You have many choices

How to write a
member function

How to write a
member function

How to write a
member function

How to write a
member function
Note: none of these are ambiguous

Operator Overloading

Nearly all of these operators can be customized to do literally
anything, depending on the types of a and b

Fun with Operator Overloading:
Boost.Spirit Parser Generator

Here’s an EBNF Specification

And here’s some C++ which returns a
parser for that EBNF grammar

https://www.boost.org/doc/libs/1_67_0/libs/spirit

Suppose we want to
parse these strings:

https://www.boost.org/doc/libs/1_67_0/libs/spirit

Fun with
Operator
Overloading:
Analog Literals

http://www.eelis.net/C++/analogliterals.xhtml

http://www.eelis.net/C++/analogliterals.xhtml

Fun with Operator Overloading:
Analog Literals

