
UNIT 3
Concrete Data Types

Classification of Data Structures

Concrete vs. Abstract Data Structures

Most Important Concrete Data Structures

Arrays

Records

Linked Lists

Binary Trees

Unit 3- Concrete Data Types 2

Overview of Data Structures

There are two kinds of data types:
simple or atomic

structured data types or data structures

An atomic data type represents a single data item.

A data structure , on the other hand, has
a number of components

a structure

a set of operations

Next slide shows a classification of the most important
data structures (according to some specific properties)

Unit 3- Concrete Data Types 3

Data Structure Classification

Unit 3- Concrete Data Types 4

Concrete Versus Abstract Types
Concrete data types or structures (CDT's) are direct implementations of a
relatively simple concept.
Abstract Data Types (ADT's) offer a high level view (and use) of a concept
independent of its implementation.
Example: Implementing a student record:

CDT: Use a struct with public data and no functions to represent the record
– does not hide anything

ADT: Use a class with private data and public functions to represent the record
– hides structure of the data, etc.

Concrete data structures are divided into:
contiguous
linked
hybrid

Some fundamental concrete data structures:
arrays
records,
linked lists
trees
graphs.

Unit 3- Concrete Data Types 5

C++ Arrays
A C++ array has:

a collection of objects of the same type
a set of index values in the range [0,n]

Structure:
objects are stored in consecutive locations
each object has a unique index

Operations:
[i] accesses the (i+1)th object

E.g. In
char word[8];

word is declared to be an array of 8 characters
8 is the dimension of the array
dimension must be known at compile time.

Unit 3- Concrete Data Types 6

C++ Arrays (cont’d)

Array indices (or subscripts) start at 0.
word 's elements are:

word[0], word[1], ... , word[7]

An array can also be initialized, but with constants only

int ia[] = {1,2,0};

Arrays cannot be assigned to one another; each
element must be assigned in turn

Unit 3- Concrete Data Types 7

Arrays & Pointers
Are closely related.
The declaration:

type a[10]
allocates space for 10 items of type type
items are stored in consecutive memory locations

C++ treats consecutive elements in the array as
having consecutive addresses:
&a[0] < &a[1] < ... < &a[9]
and
&a[1] = &a[0] + 1
&a[i] = &a[i-1] + 1

a is a variable of type pointer to type,
&a[i] is the same as a+i
a[i] is the same as *(a+i)

There are two ways to access the elements of an
array. We can use either:

array subscripts, or
pointers

Suppose we declare
int a[10];

then

Unit 3- Concrete Data Types 8

Example
Suppose we declare:

int i, a[10]
The following two statements output the elements of a

1. for (i = 0; i < 10; i++)
cout << a[i]; // using subscripts

2. for (i = 0; i < 10; i++)
cout << *(a + i); // using pointers

If
int * p;

then
p = &a[i] or
p = a + i

makes p point to the i-th element of a .

Straying beyond the range of an array results in a segmentation fault.
Pointers are not integers

Exception: NULL (which is 0) can be assigned to a pointer.
NULL is the undefined pointer value

Unit 3- Concrete Data Types 9

Dynamic arrays
Are declared as pointers
Space for these arrays is allocated later, when the size is known
Example: Consider the declarations:

int b[10];
int * a;
a = new int[10];

Then:
a and b are both arrays
b is a fixed array ; a is a dynamic array
[] can also be used on a
a[2] is the third element of a

BUT
b has space for ten integers
a has space for one pointer

– space for its elements must be allocated by new
b is a constant pointer; a can be changed

A dynamic array can be expanded
I.e. to expand a we can write:

int* temp = new int[10 + n];
for (int i = 0; i<10; i++)

temp[i] = a[i];
delete a;
a = temp;

Example Using Dynamic
Arrays:

Implementation of
EmployeeDB using dynamic
arrays:

EmployeeDB (Dynamic
Array)

Unit 3- Concrete Data Types 10

Passing Array Parameters

Arrays are always passed by reference

Suppose we declare,

int a[10];

To pass array a to a function f, f may be declared as:

type f(int d[], int size) or
type f(int* d , int size)

In any case, f is called by f(a, sizeof a) .

Unit 3- Concrete Data Types 11

Multi-dimensional Arrays
To store the temperature measured at each hour of each day for a
week, we can declare :

int temp[7][24];
temp is a 2-dimensional array.
to get the temperature at noon on Monday, we can do:

temp[1][11];

To pass a multi-dimensional array to a function, the first subscript
can be free.
i.e. To pass temp to f, f may been declared as

... f(int t[][24], int size1); or

... f(int (*t)[24], int size1); or

... f(int** t, int size1, int size2)
In the last declaration, t is a pointer to a pointer, while in the other
two t is a pointer to an array of 24 integers

Unit 3- Concrete Data Types 12

Multi-dimensional Arrays vs. Pointers
Given the declarations:

int t[7][24];
int* s[7];
int** r;

we can allocate adequate space to s and r so that t, s and r behave
as 2d arrays

i.e t[3][4] s[3][4] r[3][4] all work fine

But
t is a true 2-dimensional array (has space allocated)
s is an array of 7 pointers (each pointing to an array of 24 integers)
r is a pointer to a pointer

A use of semi-dynamic arrays:
arrays with different row length

i.e.
char* day[8] = {"Illegal day name", "Sunday", ..., "Friday"}

Unit 3- Concrete Data Types 13

Features of Arrays

Simple structures.

Their size is fixed;
dynamic arrays can be expanded, but expansion is expensive.

Insertion and deletion in the middle is difficult.

Algorithms are simple.

Accessing the i-th element is very efficient

Unit 3- Concrete Data Types 14

C++ Records (struct's)
Records allow us to group data and use them together as a unit
The record type has:

a collection of objects of same or different type
each object has a unique name
.obname accesses the object with name obname.

C++ uses "struct" for records. They are also called "structures" in C++.
For instance, after declaring

struct date {
int day;
char* month;
int year;

};
date is now a new type; it can be used as:

date today = {20, "jun" , 1993};
We can access the components of a structure
using the select member operator ".“
E.g. today.month[2] // 'n'

A C++ struct may also
have function members.

The difference
between classes
and records:

by default, a class
components are private,
while a struct's
components are public

Unit 3- Concrete Data Types 15

C++ Records (cont’)
Structures are commonly used to implement lists, trees, etc. An item
of these types of structures usually looks like:

struct item {

int data;

item* next;

} ;

We can then declare:

item item1, item2, *head, *current;

The physical structure of this would look like the following:

Unit 3- Concrete Data Types 16

The operator ->
Structure components can be accessed by pointers using the point
at member operator "->".
E.g. If we set

head = &item1
then

head -> data
is the data field of item1 .
Structures can be copied member-wise :

item2 = *head

We can also pass a structure as a parameter to a function.
However, it is usually more efficient to pass a structure by
reference, or to pass a pointer to the structure instead.
i.e.

void f(const date& d) or
void f(const date* d)

Unit 3- Concrete Data Types 17

Linked Lists
A (singly) linked list is a sequence of nodes linked together:

They represent sequences of data items.
Each node in the list contains the item and a pointer to the next
element.
The last pointer is set to 0 (or NULL) to denote the end of the list.
The whole list is defined by a pointer to the first item (called list here).
In C++ the node and the list are defined as:

or// TYPE is the type of our items
typedef int TYPE;
struct node {

TYPE item;
node* next;

};

typedef int TYPE;
class node {

public:
TYPE item;
node* next;

};

Unit 3- Concrete Data Types 18

Common Operations on Linked List
Insert an item in the list. Many types of insertion:

insert_first: insert item at the front of list
insert_last: insert item at the end of the list
insert_after: insert item in list after a certain node

find: finds the node in the list with a given item
delete_item: removes an item from the list
printNode: prints the contents of a node

A Singly Linked List Toolkit
The following files contain an implementation of a module (or toolkit)
for the singly linked list structure:
Singly Linked List

Example Using Linked Lists
Implementation of EmployeeDB using singly linked lists:
EmployeeDB (Linked List)

Unit 3- Concrete Data Types 19

Head Nodes

Processing of this first node is different from processing
of the other nodes.

A head node is a dummy node at the beginning of the
list.

It is similar to the other nodes, except that it has a special value

It is never deleted.

Processing every actual node is the same.

Usually, it is more confusing and it is not used.

Unit 3- Concrete Data Types 20

Circular Linked Lists (or rings)
A circular linked list looks like:

A circular linked list is appropriate when there is no
distinct first and last item.
The algorithms for circular linked lists are similar to
those for singly linked lists, except that

none of the links is null
the end of the list is reached when
curr->next == head

Unit 3- Concrete Data Types 21

Doubly-linked Lists
Similar to singly linked lists except that each node also has a
pointer to the previous node.
Doubly linked list node definition:

struct dnode {
TYPE item;
dnode* next;
dnode* prev;

} ;
Operations are defined similarly

A Doubly Linked
List Toolkit :
Can be found in
Doubly Linked List

Unit 3- Concrete Data Types 22

Features of Linked Lists

Compared to arrays, linked lists have the following
advantages/disadvantages:

Advantages
Are dynamic structures; space is allocated as required.

Their size is not fixed; it grows as needed.

Insertion and deletion in the middle is easy.

Disadvantages
More space is needed for the links.

Algorithms are more complex.

Impossible to directly access a node of the list.

Unit 3- Concrete Data Types 23

Binary Trees

A binary tree is a structure that
is either empty, or

it consists of a node called a root and two binary trees called the
left subtree and the right subtree .

Pictorially a binary tree looks like the following:

Unit 3- Concrete Data Types 24

Parents, Children & Paths
Parents & Children:

If there is a link from node N to M then N is the parent of M and
M is a child of N.
The root has no parent.
A leaf is a node on the bottom level of the tree without any
children.
A node can have a maximum of 2 children.
A tree cannot have cycles.

Grandparents, grand children, ancestors, descendants
are defined similarly.
Path from N1 to Nk

a sequence of nodes N1, N2,..., Nk, where Ni is a parent of
Ni+1.
path length : # of nodes in the path from N1 to Nk (some authors
use # of edges).

Unit 3- Concrete Data Types 25

Depth or level of a node N
length of the unique path from the root to N

the level of the root is 1.

Height of a node N:
length of the longest path from N to a leaf

a leaf's height is 1.

Height of the tree:
height of its root

The number of nodes in a binary tree of height h is >= h
and <= 2h -1 nodes.

Unit 3- Concrete Data Types 26

Implementation of Trees

Implementation of a binary tree in C++:
a node in the tree contains the item and two pointers to the
subtrees:

typedef int TYPE ;

struct bnode {

TYPE item;

bnode* left;

bnode* right;

};

A C++ binary search tree is just a pointer to the root.

Unit 3- Concrete Data Types 27

Common Operations for Binary Trees

Insert an item in the tree: To the left or right of a node:
insert_left: insert item on the left of a given node

insert_right: insert item on the right of a given node

find: finds the node in the tree with a given item

find_parent: finds the parent of a given node in the tree

delete_node: removes the node with the given item from the tree

print: prints the whole tree (sideways)

A Binary Tree Toolkit

An implementation of a module (or toolkit) for the binary tree
structure can be found in the Examples:

Binary Tree

Unit 3- Concrete Data Types 28

Traversing a binary tree
There are three types of traversal.

preorder : node then left subtree then right subtree
inorder : left subtree then node then right subtree
postorder : left subtree then right subtree then node

Inorder traversal: The following code applies a function visit to every
node in the tree inorder:

void inorder(bnode* root) {
// apply the function visit to every node in the tree, inorder

if(root != NULL) {
inorder(root->left);
visit (root); // apply visit to the root of the tree
inorder(root->right);

}
}
Tree traversal is not usually implemented by a function. What is
shown here is just an example.

Unit 3- Concrete Data Types 29

Higher trees and Graphs

N-ary Trees

Like binary trees except that a node may have up to n
subtrees.

Graphs

More general than trees. They can have cycles and are
usually hybrid structures.

