UNIT 3
Concrete Data Types

m Classification of Data Structures
m Concrete vs. Abstract Data Structures
® Most Important Concrete Data Structures
» Arrays
»Records
»Linked Lists
»Binary Trees

Overview of Data Structures

®m There are two kinds of data types:

» simple or atomic

» structured data types or data structures
® An atomic data type represents a single data item.
m A data structure , on the other hand, has

» a number of components

» a structure

» a set of operations

®m Next slide shows a classification of the most important
data structures (according to some specific properties)

Unit 3- Concrete Data Types

Data Structure Classification

Drata Stmctires
Linear Mon-Linear
Direct Access Bequendsl Access Sets Trees Tables Graphs
(Maps)
Huomogeneos Heterogenons General LIFC FIFC
| | | | I
Array Record List Stack Quene

Unit 3- Concrete Data Types

Concrete Versus Abstract Types

Concrete data types or structures (CDT's) are direct implementations of a
relatively simple concept.
Abstract Data Types (ADT's) offer a high level view (and use) of a concept
independent of its implementation.
Example: Implementing a student record:
» CDT: Use a struct with public data and no functions to represent the record
— does not hide anything
» ADT: Use a class with private data and public functions to represent the record
— hides structure of the data, etc.
Concrete data structures are divided into:
» contiguous
> linked
> hybrid
Some fundamental concrete data structures:
> arrays
> records,
> linked lists
» trees
» graphs.

Unit 3- Concrete Data Types

C++ Arrays

® A C++ array has:
» a collection of objects of the same type
» a set of index values in the range [0,n]
m Structure:
» objects are stored in consecutive locations
» each object has a unique index
®m Operations:
» [i] accesses the (i+1)th object

mEg.In
char word|[8];
» word is declared to be an array of 8 characters
» 8 is the dimension of the array
» dimension must be known at compile time.

Unit 3- Concrete Data Types

C++ Arrays (cont’'d)

®m Array indices (or subscripts) start at 0.
word 's elements are:

m word[0], word[1], ... , word[7]
® An array can also be initialized, but with constants only
® intiaf] ={1,2,0};

®m Arrays cannot be assigned to one another; each
element must be assigned in turn

Unit 3- Concrete Data Types

Arrays & Pointers

Are closely related. ® Suppose we declare

The declaration: int a[10];

type a[10] then
» allocates space for 10 items of type type
» items are stored in consecutive memory locatic

C++ treats consecutive elements in the array ADDRESS

having consecutive addresses: .

&a[0] < &a[1] < ... < &a[9] a0r&(afl])
and a+lord(a(l])
&a[l] = &a[0] + 1 3+l
&a[i] = &afi-1] + 1

a is a variable of type pointer to type,

&ali] is the same as a+i
a[i] is the same as *(a+i)

There are two ways to access the elements ¢

array. We can use either:
» array subscripts, or 3+9
> pointers

Unit 3- Concrete Data Types

LOCATION (neme)

a0] or*a
a[1] or*(a+1)
(2]

a[?] or*{a+9)

Example

Suppose we declare:
inti, a[10]

The following two statements output the elements of a
1. for (i=0;i<10; i++)

cout << a[i; /[using subscripts
2. for (i=0;i<10;i++)
cout << *(a +i); /l using pointers
If
int* p;
then
p = &ali] or
p=a+i

makes p point to the i-th element of a .

Straying beyond the range of an array results in a segmentation fault.

Pointers are not integers
» Exception: NULL (which is 0) can be assigned to a pointer.
» NULL is the undefined pointer value

Unit 3- Concrete Data Types

Dynamic arrays

m Are declared as pointers
m Space for these arrays is allocated later, when the size is known
m Example: Consider the declarations:
int b[10];
int* a;
a = new int[10];
Then:
» aand b are both arrays
» bisa fixed array ; ais adynamic array
» [] can also be used on a
» a[2] is the third element of a

Example Using Dynamic
BUT Arrays:
> b has space for ten integers
» ahas space for one pointer .
— space for its elements must be allocated by new Implementation _Of)
> b is a constant pointer; a can be changed EmployeeDB using dynamic
arrays:
® A dynamic array can be expanded EmployeeDB (Dynamic
» le.to expand a we can write:
int* te?np = new int[10 + nJ; Array)
for (inti=0;i<10; i++)
templi] = a[i];
delete a;
a = temp;
Unit 3- Concrete Data Types 9

Passing Array Parameters

®m Arrays are always passed by reference
®m Suppose we declare,
int a[10];

To pass array a to a function f, f may be declared as:

type f(int d[], int size) or
type f(int* d , int size)

® In any case, fis called by f(a, sizeof a) .

Unit 3- Concrete Data Types 10

Multi-dimensional Arrays

To store the temperature measured at each hour of each day for a
week, we can declare :
int temp[7][24];
» temp is a 2-dimensional array.

» to get the temperature at noon on Monday, we can do:
temp([1][11];

To pass a multi-dimensional array to a function, the first subscript
can be free.

l.e. To pass temp to f, f may been declared as

... f(int t[][24], int sizel); or
... f(int (*t)[24], int sizel); or
... f(int** t, int sizel, int size2)

In the last declaration, t is a pointer to a pointer, while in the other
two t is a pointer to an array of 24 integers

Unit 3- Concrete Data Types 11

Multi-dimensional Arrays vs. Pointers

Given the declarations:
int t[7][24];
int* s[7];
int** r;
we can allocate adequate space to s and r so that t, s and r behave
as 2d arrays
» i.e t[3][4] s[3][4] r[3][4] all work fine

But
» tis atrue 2-dimensional array (has space allocated)
» sis an array of 7 pointers (each pointing to an array of 24 integers)
» ris a pointer to a pointer

A use of semi-dynamic arrays:
arrays with different row length

ie.
char* day[8] = {"lllegal day nhame", "Sunday", ..., "Friday"}

Unit 3- Concrete Data Types 12

Features of Arrays

®m Simple structures.
B Their size is fixed;
» dynamic arrays can be expanded, but expansion is expensive.
m Insertion and deletion in the middle is difficult.
m Algorithms are simple.
®m Accessing the i-th element is very efficient

Unit 3- Concrete Data Types 13

C++ Records (struct's)

® Records allow us to group data and use them together as a unit
® The record type has:
» a collection of objects of same or different type
» each object has a unique name
» .0bname accesses the object with name obname.
m C++ uses "struct” for records. They are also called "structures" in C++.
®m For instance, after declaring

struct date { A C++ struct may also
int day; have function members.
char* month;
int year; The difference
h between classes
date is now a new type; it can be used as: and records:
date today = {20, "jun", 1993}; by default, a class
® We can access the components of a structure| components are private,
using the select member operator ".* while a struct's

E.g. today.month[2] // 'n' components are public

Unit 3- Concrete Data Types 14

C++ Records (cont’)

®m Structures are commonly used to implement lists, trees, etc. An item
of these types of structures usually looks like:

struct item {
int data;
item* next;
b
® We can then declare:
item item1, item2, *head, *current;

» The physical structure of this would look like the following:

head em?

current iternl

deta data

next next

Unit 3- Concrete Data Types 15

The operator ->

®m Structure components can be accessed by pointers using the point
at member operator "->".

m E.g. If we set
head = &item1
then
head -> data
is the data field of item1 .
®m Structures can be copied member-wise :
item2 = *head

® We can also pass a structure as a parameter to a function.
However, it is usually more efficient to pass a structure by
reference, or to pass a pointer to the structure instead.

" ie.
void f(const date& d) or
void f(const date* d)

Unit 3- Concrete Data Types 16

Linked Lists

|
list

A (sinalv) linked list is a seauence of nodes linked toaether:

Moo [[[[5] o [$

® They represent sequences of data items.
® Each node in the list contains the item and a pointer to the next
element.
® The last pointer is set to O (or NULL) to denote the end of the list.
® The whole list is defined by a pointer to the first item (called list here).
®m In C++ the node and the list are defined as:
I TYPE is the type of our items |OF | typedef int TYPE;
typedef int TYPE; class node {
struct node { public:
TYPE item; TYPE item;
node* next; node* next;
h H
Unit 3- Concrete Data Types 17

Common Operations on Linked List

Insert an item in the list. Many types of insertion:

» insert_first: insert item at the front of list

» insert_last: insert item at the end of the list

» insert_after: insert item in list after a certain node
find: finds the node in the list with a given item
delete_item: removes an item from the list
printNode: prints the contents of a node

A Singly Linked List Toolkit

The following files contain an implementation of a module (or toolkit)
for the singly linked list structure:

Singly Linked List

Example Using Linked Lists
Implementation of EmployeeDB using singly linked lists:
EmployeeDB (Linked List)

Unit 3- Concrete Data Types 18

Head Nodes

®m Processing of this first node is different from processing
of the other nodes.

® A head node is a dummy node at the beginning of the
list.

» Itis similar to the other nodes, except that it has a special value
» Itis never deleted.

» Processing every actual node is the same.
®m Usually, it is more confusing and it is not used.

Unit 3- Concrete Data Types 19

Circular Linked Lists (or rings)

m A circular linked list looks like:

\ tremd
/']

m A circular linked list is appropriate when there is no
distinct first and last item.

®m The algorithms for circular linked lists are similar to
those for singly linked lists, except that
» none of the links is null

» the end of the list is reached when
curr->next == head

Tremd 7| ttem3 | eemd

Unit 3- Concrete Data Types 20

Doubly-linked Lists

m Similar to singly linked lists except that each node also has a
pointer to the previous node.

® Doubly linked list node definition:
struct dnode {

_ A Doubly Linked
TYPE item;

dnode* next: List Toolkit :
dnode* prev: Can be found in
}; ’ Doubly Linked List
®m Operations are defined similarly
hist
\ iternl items -

Unit 3- Concrete Data Types 21

Features of Linked Lists

Compared to arrays, linked lists have the following
advantages/disadvantages:

® Advantages
» Are dynamic structures; space is allocated as required.
» Their size is not fixed; it grows as needed.
» Insertion and deletion in the middle is easy.
®m Disadvantages
» More space is needed for the links.
» Algorithms are more complex.
» Impossible to directly access a node of the list.

Unit 3- Concrete Data Types 22

Binary Trees

®m A binary tree is a structure that
> s either empty, or

» it consists of a node called a root and two binary trees called the
left subtree and the right subtree .

®m Pictorially a binary tree looks like the following:
A
BQ/C%Q

O O
/
QG

Unit 3- Concrete Data Types 23

Parents, Children & Paths

® Parents & Children:

» If there is a link from node N to M then N is the parent of M and
M is a child of N.

» The root has no parent.

» A leaf is a node on the bottom level of the tree without any
children.

» A node can have a maximum of 2 children.
» A tree cannot have cycles.
m Grandparents, grand children, ancestors, descendants
are defined similarly.
m Path from N1 to Nk

» a sequence of nodes N1, N2,..., Nk, where Ni is a parent of
Ni+1.

» path length : # of nodes in the path from N1 to Nk (some authors
use # of edges).

Unit 3- Concrete Data Types 24

®m Depth or level of a node N
» length of the unique path from the root to N
» the level of the root is 1.
® Height of a node N:
» length of the longest path from N to a leaf
» aleaf's heightis 1.
®m Height of the tree:
» height of its root
® The number of nodes in a binary tree of height his >=h
and <= 2h -1 nodes.

Unit 3- Concrete Data Types 25

Implementation of Trees

® Implementation of a binary tree in C++:

» anode in the tree contains the item and two pointers to the
subtrees:

typedef int TYPE ;
struct bnode {
TYPE item;
bnode* left;
bnode* right;
I3

m A C++ binary search tree is just a pointer to the root.

Unit 3- Concrete Data Types 26

Common Operations for Binary Trees

® Insert anitem in the tree: To the left or right of a node:

» insert_left: insert item on the left of a given node

» insert_right: insert item on the right of a given node
find: finds the node in the tree with a given item
find_parent: finds the parent of a given node in the tree
delete_node: removes the node with the given item from the tree
print: prints the whole tree (sideways)

A Binary Tree Toolkit

® An implementation of a module (or toolkit) for the binary tree
structure can be found in the Examples:

» Binary Tree

Unit 3- Concrete Data Types 27

Traversing a binary tree

® There are three types of traversal.
» preorder : node then left subtree then right subtree
» inorder : left subtree then node then right subtree
» postorder : left subtree then right subtree then node

® Inorder traversal: The following code applies a function visit to every
node in the tree inorder:

void inorder(bnode* root) {
/I apply the function visit to every node in the tree, inorder
if(root 'I= NULL) {
inorder(root->left);
visit (root); // apply visit to the root of the tree
inorder(root->right);
}
}
®m Tree traversal is not usually implemented by a function. What is
shown here is just an example.

Unit 3- Concrete Data Types 28

Higher trees and Graphs

N-ary Trees

®m Like binary trees except that a node may have up to n
subtrees.

Graphs

® More general than trees. They can have cycles and are
usually hybrid structures.

Unit 3- Concrete Data Types

29

