Entry Points to Visualization: Different Methods for Different Problems

Tamara Munzner
Department of Computer Science
University of British Columbia

Viz@UBC Kickoff: Lunchtime Lecture Series
12 March 2019

www.cs.ubc.ca/~tmm/talks.html#vizatubc19-entry

@tamaramunzner
Visualization (vis) defined & motivated

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

• human in the loop needs details about data
 – entry point: exploratory data analysis
 • don't know exactly what questions to ask in advance
 – entry point: presentation of known results
 – entry point: interplay with automation
 • refining model, trustbuilding/monitoring, mixed-initiative

• external representation: perception vs cognition

• intended task, measurable definitions of effectiveness

more at:
Visualization Analysis and Design, Chapter 1.
Analysis framework: Four levels, three questions

- **domain situation**
 - who are the target users?

- **abstraction**
 - translate from specifics of domain to vocabulary of visualization
 - **what** is shown? **data** abstraction
 - **why** is the user looking at it? **task** abstraction

- **idiom**
 - **how** is it shown?
 - **visual encoding** idiom: how to draw
 - **interaction** idiom: how to manipulate

- **algorithm**
 - efficient computation

Different threats to validity at each level

- cascading effects downstream

- Domain situation
 - You misunderstood their needs

- Data/task abstraction
 - You're showing them the wrong thing

- Visual encoding/interaction idiom
 - The way you show it doesn't work

- Algorithm
 - Your code is too slow
Different methods for different problems, from different fields

- interdisciplinary, mix of qual and quant approaches (typically)

- **anthropology/ethnography**
 - **Domain situation**
 - Observe target users using existing tools
 - **Data/task abstraction**
 - **Visual encoding/interaction idiom**
 - Justify design with respect to alternatives
 - **Algorithm**
 - Measure system time/memory
 - Analyze computational complexity
 - Analyze results qualitatively
 - Measure human time with lab experiment (lab study)
 - Observe target users after deployment (field study)

- **design**
 - **Domain situation**
 - Observe target users using existing tools
 - **Data/task abstraction**
 - **Visual encoding/interaction idiom**
 - Justify design with respect to alternatives
 - Analyze results qualitatively
 - Measure human time with lab experiment (lab study)

- **computer science**
 - **Domain situation**
 - Observe target users using existing tools
 - **Data/task abstraction**
 - **Algorithm**
 - Measure system time/memory
 - Analyze computational complexity

- **psychology**
 - **Domain situation**
 - Observe target users using existing tools
 - **Data/task abstraction**
 - **Algorithm**
 - Measure system time/memory
 - Analyze computational complexity

- **anthropology/ethnography**
 - **Domain situation**
 - Observe target users using existing tools
 - **Data/task abstraction**
 - **Algorithm**
 - Measure system time/memory
 - Analyze computational complexity

Method mismatches: Common problem

- **Domain situation**
 Observe target users using existing tools

- **Data/task abstraction**
 - Visual encoding/interaction idiom
 Justify design with respect to alternatives
 - Algorithm
 Measure system time/memory
 Analyze computational complexity
 - Analyze results qualitatively
 - Measure human time with lab experiment (*lab study*)
 - Observe target users after deployment (*field study*)
 - Measure adoption

lab studies can't confirm task abstraction

benchmarks can't confirm design

Analysis examples: Single paper includes only subset of methods

- observe and interview target users
- justify encoding/interaction design
- measure system time/memory
- qualitative result image analysis

- observe and interview target users
- justify encoding/interaction design
- qualitative result image analysis
- field study, document deployed usage

An energy model for visual graph clustering. (LinLog) Noack. Graph Drawing 2003
- qualitative/quantitative image analysis

- lab study, measure time/errors for operation

- justify encoding/interaction design
- qualitative result image analysis
- test on target users, get utility anecdotes

- justify encoding/interaction design
- computational complexity analysis
- measure system time/memory
- qualitative result image analysis
Different angles of attack for different problems

- Technique-driven work
- Problem-driven work
- Theoretical foundations
- Evaluation
Technique-driven work

• scalable algorithms & systems
 – typical evaluation: computational benchmarks

• new layout & interaction techniques
 – typical evaluation: usage scenarios
 – typical evaluation/characterization: controlled experiments on human subjects
Technique-driven: Graph/network drawing

Daniel Archambault
David Auber (Bordeaux)

https://youtu.be/AWX Ae8zykt8

TopoLayout
SPF
Grouse
GrouseFlocks
TugGraph

Benjamin Renoust
Guy Melançon (Bordeaux)

Detangler
https://youtu.be/QOtnHSsUV6k
Technique-driven: Tree drawing

Zipeng Liu

Shing Hei Zhan

Aggregated Dendrograms

https://youtu.be/2SLcz7KNLJw

TreeJuxtaposer

https://youtu.be/GdaPj8a9QEo
Evaluation experiments: Graph/tree drawing

Dmitry Nekrasovski
Adam Bodnar
Joanna McGrenere

Search set model of path tracing

Stretch and squish navigation

Jessica Dawson
Joanna McGrenere

Lab study led to “focus+context” idiom disenchantment

1. Qualitative study: coding observational video
2. Create & implement behavioral model
3. Multiple regression to untangle factor relationships
Technique-driven: Dimensionality reduction

Stephen Ingram

Glimmer

Glint

DimStiller

QSNE
Dimensionality reduction for documents

• derive low-dimensional target space from high-dimensional measured space
Evaluation experiments: Dimensionality reduction

Michael Sedlmair Melanie Tory

traditional user study:
many people for short time,
few datasets

data studies: many datasets, few people for long time (experts qual+quant coding)

Guidance on DR & scatterplot choices

Taxonomy of cluster separation factors
Evaluation in the field: Dimensionality reduction

DR in the Wild

interview study & qualitative
coding led to task abstractions:
specific to data type,
agnostic to domain

Matt Brehmer Michael Sedlmair Melanie Tory Stephen Ingram
Problem-driven work

• "design studies"
 – in collaboration with target users
 • real data, real tasks
 • intensive requirements analysis
 – iterative refinement
 • deploy tools/systems
 – typical evaluation: field studies

• my strategy: opportunistic collaboration
 – many domains
 – both industrial and academic partners
Problem-driven: Genomics

Aaron Barsky (Microbio)
Jenn Gardy (Microbio)
Robert Kincaid (Agilent)

Miriah Meyer (Harvard)
Hanspeter Pfister (Harvard)

Cerebral
https://youtu.be/76HhG1FQngI

MizBee
https://youtu.be/86p7brwuz2q

MulteeSum, Pathline
Problem-driven: Genomics, fisheries

Joel Ferstay (BC Cancer)

Cydney Nielsen (BC Cancer)

Variant View
https://youtu.be/AHDnv_qMXxQ

Maryam Booshehrian

Torsten Moeller (SFU)

Vismon
https://youtu.be/h0kHoS4VYmk
Problem-driven: Tech industry

Heidi Lam
(Google)

Diane Tang

Stephen North
(AT&T Research)

SessionViewer: web log analysis
https://youtu.be/T4MaTZd56G4

methods reflection: staged model of access to target users

LiveRAC: systems time-series
https://youtu.be/ld0c3H0VSkw
Problem-driven: Building energy mgmt, journalism

Kevin Tate
(Pulse/EnerNOC)

redesign success:
industrial swdev
resources committed

Jonathan Stray
(Assoc Press)

Matt Brehmer
Stephen Ingram

https://vimeo.com/71483614
Overview: The Design, Adoption, and Analysis of a Visual Document Mining Tool For Investigative Journalists.

http://www.cs.ubc.ca/labs/imager/tr/2014/Overview/

https://www.overviewdocs.com
<table>
<thead>
<tr>
<th>Case Study</th>
<th>#1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Collection</td>
<td>4,500 pages from FOIA</td>
</tr>
<tr>
<td>Question</td>
<td>What did security contractors do during Iraq war?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question</th>
<th>Were municipal police funds mismanaged?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question</td>
<td>Were Paul Ryan's campaign statements hypocritical?</td>
</tr>
<tr>
<td>Question</td>
<td>What is the gun ownership debate about?</td>
</tr>
<tr>
<td>Question</td>
<td>Was gov't response to emergency incident effective?</td>
</tr>
<tr>
<td>Question</td>
<td>Did gov't fail to pass bills addressing police misconduct?</td>
</tr>
</tbody>
</table>
Case Study

<table>
<thead>
<tr>
<th>Question</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Collection</td>
<td>4,500 pages from FOIA</td>
<td>5,996 emails from FOIA</td>
<td>8,680 pages from FOIA</td>
<td>1,278 survey comments</td>
<td>4,653 emails from FOIA</td>
<td>1,680 bills</td>
</tr>
<tr>
<td>Question</td>
<td>What did security contractors do during Iraq war?</td>
<td>Were municipal police funds mismanaged?</td>
<td>Were Paul Ryan’s campaign statements hypocritical?</td>
<td>What is the gun ownership debate about?</td>
<td>Was gov’t response to emergency incident effective?</td>
<td>Did gov’t fail to pass bills addressing police misconduct?</td>
</tr>
</tbody>
</table>
… to redesign, to reflect on task abstractions…

<table>
<thead>
<tr>
<th>Case Study</th>
<th>Document Collection</th>
<th>Question</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4,500 pages from FOIA</td>
<td>What did security contractors do during Iraq war?</td>
<td>5,996 emails from FOIA</td>
<td>Were municipal police funds mismanaged?</td>
<td>8,680 pages from FOIA</td>
<td>Were Paul Ryan’s campaign statements hypocritical?</td>
<td>1,278 survey comments</td>
<td>4,653 emails from FOIA</td>
</tr>
<tr>
<td></td>
<td>5,996 emails from FOIA</td>
<td>find the needle in the haystack</td>
<td>8,680 pages from FOIA</td>
<td>What is the gun ownership debate about?</td>
<td>1,278 survey comments</td>
<td>Was gov’t response to emergency incident effective?</td>
<td>4,653 emails from FOIA</td>
<td>Did gov’t fail to pass bills addressing police misconduct?</td>
</tr>
</tbody>
</table>
THOUSANDS OF DOCUMENTS
Problem-driven: In-car networks, e-commerce

Michael Sedlmair
RelEx (BMW)
https://youtu.be/89lsQXc6Ao4

Kim Dextras-Romagnino

latest work: Segmentifier (Mobify): e-commerce clickstreams
sneak preview video
Segmentifier: Interactively Refining Clickstream Data into Actionable Segments
Theoretical foundations: Methodology

Nested Model

- Visual Encoding Pitfalls
 - Unjustified Visual Encoding
 - Hammer In Search Of Nail
 - 2D Good, 3D Better
 - Color Cacophony
 - Rainbows Just Like In The Sky

- Strategy Pitfalls
 - What I Did Over My Summer
 - Least Publishable Unit
 - Dense As Plutonium
 - Bad Slice and Dice

Papers Process & Pitfalls

Anamaria Crisan

Michael Sedlmair

Miriah Meyer

Design Study Methodology

Regulatory & Organizational Constraints
Design Study Methodology

Reflections from the Trenches and from the Stacks

http://www.cs.ubc.ca/labs/imager/tr/2012/dsm/

Methodology for problem-driven work

• definitions

• 9-stage framework

• 32 pitfalls & how to avoid them

• comparison to related methodologies
Lessons learned from the trenches: 21 between us

- Cerebral genomics
- MizBee genomics
- Pathline genomics
- MulteeSum genomics
- Vismon fisheries management
- QuestVis sustainability
- WiKeVis in-car networks
- MostVis in-car networks
- Car-X-Ray in-car networks
- ProgSpy2010 in-car networks
- RelEx in-car networks
- Cardiogram in-car networks
- AutobahnVis in-car networks
- VisTra in-car networks
- Constellation linguistics
- LibVis cultural heritage
- Caidants multicast
- SessionViewer web log analysis
- LiveRAC server hosting
- PowerSetViewer data mining
- LastHistory music listening
Design study methodology: definitions

- **TASK CLARITY**
 - crisp
 - fuzzy

- **INFORMATION LOCATION**
 - head
 - computer

- **ALGORITHM AUTOMATION POSSIBLE**

- **NOT ENOUGH DATA**

- **DESIGN STUDY METHODOLOGY SUITABLE**
9 stage framework

PRECONDITION

CORE

ANALYSIS

learn → winnow → cast → discover → design → implement → deploy → reflect → write
9-stage framework

PRECONDITION

CORE

ANALYSIS

learn
winnow
cast

learn
winnow
cast

discover → design → implement → deploy → reflect → write
9-stage framework

discover
design
implement
deploy

PRECONDITION

CORE

ANALYSIS
9-stage framework

- guidelines: confirm, refine, reject, propose
9-stage framework

PRECONDITION

CORE

ANALYSIS

iterative
and practice within the culture using methods that include observation methodology in HCI [16, 29, 30]. Traditional ethnography in minology from these methodologies to buttress a key claim on how to tics in HCI with similar qualitative intentions. We also use the ter- we now compare design study methodology to influential methodolo-

design study methodology: 32 pitfalls

<table>
<thead>
<tr>
<th>Pitfall ID</th>
<th>Description</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF-1</td>
<td>Premature advance: jumping forward over stages</td>
<td>General</td>
</tr>
<tr>
<td>PF-2</td>
<td>Premature start: insufficient knowledge of visualization literature</td>
<td>Learn</td>
</tr>
<tr>
<td>PF-3</td>
<td>Premature commitment: collaboration with wrong people</td>
<td>Winnow</td>
</tr>
<tr>
<td>PF-4</td>
<td>No real data available (yet)</td>
<td>Winnow</td>
</tr>
<tr>
<td>PF-5</td>
<td>Insufficient time available from potential collaborators</td>
<td>Winnow</td>
</tr>
<tr>
<td>PF-6</td>
<td>No need for visualization: problem can be automated</td>
<td>Winnow</td>
</tr>
<tr>
<td>PF-7</td>
<td>Researcher expertise does not match domain problem</td>
<td>Winnow</td>
</tr>
<tr>
<td>PF-8</td>
<td>No need for research: engineering vs. research project</td>
<td>Winnow</td>
</tr>
<tr>
<td>PF-9</td>
<td>No need for change: existing tools are good enough</td>
<td>Winnow</td>
</tr>
</tbody>
</table>
I’m a domain expert! Wanna collaborate?

Of course!!!
considerations

Have data? Have time? Have need? ...

Interesting problem?
Design study methodology: 32 pitfalls

<table>
<thead>
<tr>
<th>PF-21</th>
<th>mistaking technique-driven for problem-driven work</th>
<th>design</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF-22</td>
<td>nonrapid prototyping</td>
<td>implement</td>
</tr>
<tr>
<td>PF-23</td>
<td>usability: too little / too much</td>
<td>implement</td>
</tr>
<tr>
<td>PF-24</td>
<td>premature end: insufficient deploy time built into schedule</td>
<td>deploy</td>
</tr>
<tr>
<td>PF-25</td>
<td>usage study not case study: non-real task/data/user</td>
<td>deploy</td>
</tr>
<tr>
<td>PF-26</td>
<td>liking necessary but not sufficient for validation</td>
<td>deploy</td>
</tr>
<tr>
<td>PF-27</td>
<td>failing to improve guidelines: confirm, refine, reject, propose</td>
<td>reflect</td>
</tr>
<tr>
<td>PF-28</td>
<td>insufficient writing time built into schedule</td>
<td>write</td>
</tr>
<tr>
<td>PF-29</td>
<td>no technique contribution ≠ good design study</td>
<td>write</td>
</tr>
<tr>
<td>PF-30</td>
<td>too much domain background in paper</td>
<td>write</td>
</tr>
<tr>
<td>PF-31</td>
<td>story told chronologically vs. focus on final results</td>
<td>write</td>
</tr>
<tr>
<td>PF-32</td>
<td>premature end: win race vs. practice music for debut</td>
<td>write</td>
</tr>
</tbody>
</table>
Horse Race vs. Music Debut

Must be first!

Am I ready?

technique-driven

problem-driven

http://www.alaineknipes.com/interests/violin_concert.jpg

EXAMPLE FROM THE TRENCHES
Don’t step on your own toes!

First design round published

Subsequent work not stand-alone paper

AutobahnVis 1.0
[Sedlmair et al., Smart Graphics, 2009]

AutobahnVis 2.0
[Sedlmair et al., Information Visualization 10(3), 2011]
Theoretical foundations: Typologies

Abstract Tasks

GEViT: Genomic Epidemiology Visualization Typology

Regulatory & Organizational Constraints

Matt Brehmer

Anamaria Crisan
Curation & Presentation: Timelines

TimeLineCurator
https://vimeo.com/123246662

Timelines Revisited
timelinesrevisited.github.io/

Matt Brehmer

Johanna Fulda
(Sud. Zeitung)

Matt Brehmer

Bongshin Lee
(Microsoft)

Benjamin Bach
(Microsoft)

Nathalie Henry-Riche
Interactive Authoring of Visual Timelines from Unstructured Text

TimeLineCurator: Interactive Authoring of Visual Timelines from Unstructured Text.
Structured creation process

- Browse
- Extract
- Format
- Show
- Update

TimelineJS
timeline.knightlab.com/
Timeline authoring model

- time required for each task

<table>
<thead>
<tr>
<th></th>
<th>Browse</th>
<th>Extract</th>
<th>Format</th>
<th>Show</th>
<th>Update</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual Drawing</td>
<td>slow</td>
<td>slow</td>
<td>slow</td>
<td>slow</td>
<td>slow</td>
</tr>
<tr>
<td>Structured Creation</td>
<td>slow</td>
<td>slow</td>
<td>slow</td>
<td>automated</td>
<td>fast</td>
</tr>
<tr>
<td>TimeLine Curator</td>
<td>fast</td>
<td>automated</td>
<td>automated</td>
<td>fast</td>
<td>fast</td>
</tr>
</tbody>
</table>
The general case for curation

- build for human in the loop as continuing need
 - automatic processing to accelerate not replace
 - assume computational results good but not perfect
 - for the indefinite future!
- visual feedback to accelerate
The importance of being brisk

• sexy use case: eureka moment
 – success: enable what was impossible before
 – vis tools for new insights & discoveries

• workhorse use case: workflow speedup
 – success: vis tools accelerate your prior workflow
 • sometimes enables the previously infeasible

• TLC use cases
 – started with speedup use case, for presentation
 • make this doc into a timeline now!
 – two other use cases nudge towards exploration
 • comparison between multiple timelines
 • speculative browsing
TimeLineCurator: Speculative Browsing

https://vimeo.com/jofu/tlc
Curation & Presentation: Timelines

TimeLineCurator
https://vimeo.com/123246662

Timelines Revisited
timelinesrevisited.github.io/
Presentation: Geometry Center math vis videos

Outside In

The Shape of Space

Stuart Levy

Mark Phillips

Delle Maxwell
Visualization entry points

• goals
 – exploratory data analysis
 – presentation
 – curation / authoring

• methods
 – algorithm development
 – system building & software development
 – lab studies with human subjects
 – field studies with human subjects
Teaching
Visualization Analysis and Design

• book page

 http://www.cs.ubc.ca/~tmm/vadbook

 – 20% promo code for book+ebook combo: HVN17

 – free to read online within UBC
 http://resolve.library.ubc.ca/cgi-bin/catsearch?bid=7678980

• slide decks at many talk lengths (1, 2, 3, 6, 8+ hrs), some w/ videos

 http://www.cs.ubc.ca/~tmm/talks.html#vadallslides
Visualization Analysis & Design

IEEE VIS 2014 Tutorial Video Preview

Tamara Munzner
Department of Computer Science
University of British Columbia
Analyse

Data Types

→ Items
→ Attributes

Data and Dataset Types

→ Tables
→ Networks
→ Items
→ Attributes

Dataset Types

→ Tables

Search

→ Multi-dimensional Table

Query

→ Identify
→ Compare
→ Summarize

Spatial Data

→ Shape

Encode

→ Arrange
→ Express
→ Separate

→ Order
→ Align

Map

→ from categorical and ordered attributes

→ Color
→ Hue
→ Saturation
→ Luminance

→ Size, Angle, Curvature, ...

→ Shape
→ Motion
→ Direction, Rate, Frequency, ...

Manipulate

→ Change
→ Juxtapose

→ Select
→ Partition

→ Navigate
→ Aggregate

→ Filter

Facet

→ Superimpose

Reduce

→ Embed

What?

Data Sets
→ Attributes
→ Data Types
→ Dataset Types

Why?

→ Why?

→ How?

→ What?

How?

→ Encode
→ Map
→ Manipulate
→ Reduce
→ Facet

→ Why?

→ How?

→ What?
How to handle complexity: 4 families of strategies

Derive

- derive new data to show within view
- change view over time
- facet across multiple views
- reduce items/attributes within single view

Manipulate

- Change
- Select
- Navigate

Facet

- Juxtapose
- Partition
- Superimpose

Reduce

- Filter
- Aggregate
- Embed
Visualization Teaching at UBC: Me

• Computer Science grad
 – open to all students, no CS prereqs, non-programming project options available
 – tooling not taught (most use D3 or R)

• Computer Science ugrad
 – coming in January 2020, 4th year CS majors
 – tooling: D3

• Data Science
 – tooling: R

• Journalism
 – tooling: Tableau

• Ed Psych, Forestry, Geography, iSchool, Psychology
 https://dfp.ubc.ca/initiatives/viz-ubc/visualization-courses
Visualization Teaching Across UBC

• many other visualization-focused courses
 – Ed Psych
 – Forestry
 – Geography
 – iSchool
 – Psychology

• initial list compiled
 https://dfp.ubc.ca/initiatives/viz-ubc/visualization-courses
 – please contact vizatubc-info@cs.ubc.ca with additions/corrections!

• still todo: compile list of courses with significant visualization content
Engaging with visualization teaching

- teach/take a visualization-focused course
- teach/take domain-oriented course where visualization plays a role
 - presentation
 - exploratory data analysis
- offer your domain problem as project topic
 - research or administrative data
Engaging: Possible Next Steps
Redesign En Masse: **Makeover Mondays**

- easy entry point, Tableau focus

Week 14 – Millions of UK workers at risk of being replaced by robots

Apr 7, 2017

During week 14 we looked at job automation and the potential impact of robots and AI on the UK employment market.

Week 13 – The Secret of Success

Mar 31, 2017

Week 13 took a look at a Russian survey about the secret of success. Dot plot, bump charts, bar charts, radar charts. This week had it all! Plus seven lessons to take on board.

Week 12 – March Madness

Mar 24, 2017

We looked at March Madness data for week 12, highlighting the phenomenon that is US college basketball. Quite a few vizzes showed the passion that

http://www.makeovermonday.co.uk/blog/
Visual Design Process In Depth: **Dear Data**

- inspiring celebration of data humanism

http://www.dear-data.com/by-week/ Giorgia Lupi and Stefanie Posavec
Visual Design Process In Depth: **Data Sketches**

- detailed process notes, from sketching through coding

http://www.datasketch.es/

Shirley Wu and Nadieh Brehmer
Pathways to participate

• join Viz@UBC
 – https://dfp.ubc.ca/initiatives/viz-ubc
 – get on visatubc-announce email list (send mail to vizatubc-info@cs.ubc.ca)
 – upcoming kickoff events: 2 more talks + 1 mixer
 – join as core, so you're findable in people index
 – join as organizer, help us decide what to do next

• join Data Visualization Society
 – https://www.datavisualizationsociety.com/
 – brand new! resources, jobs board,...
Pathways to participate

• participate in IEEE VIS 2019 in Vancouver, Oct 20-25
 –http://ieeevis.org
 –big 3 research tracks: VA, InfoVis, SciVis
 –many associated events
 • Vis in Data Science
 • Vis In Practice
 • Large Data Analysis & Visualization
 • Application Spotlights
 • many workshops including bio, security, ...
 –job fair (asynchronous)
More Information

• this talk
 https://www.cs.ubc.ca/~tmm/talks.html#vizatubc19-entry

• papers, videos, software, talks, courses
 http://www.cs.ubc.ca/group/infovis
 http://www.cs.ubc.ca/~tmm

@tamaramunzner
Q&A References

• entry points for practitioners?
 – D3 resources for advanced programmers:
 https://bl.ocks.org/
 – R resources for range of programming experience:
 https://www.tidyverse.org/
 https://ggplot2.tidyverse.org/
 – Tableau resources, for non-programmers:
 https://www.tableau.com/
 – Andy Kirk's continuously updated resources list
 http://www.visualisingdata.com/resources/
 • many of these do not require programming!