UBC Grad Course in InfoVis IEEE VisWeek 2010 Panel Perspectives on Teaching Data Visualization

Tamara Munzner

UBC Computer Science

28 October 2010

Coverage: Subfields

infovis, with one lecture on scivis

- me, and many others
- scivis, with one lecture on infovis
 - even more courses
- vis: true integration, covering both fields well
 - common: really one of above two things
 - rare: true integration with deep coverage of both
 - is this holy grail? should it be?

How to Organize? Multiple Cross-Cuts

- Principles
 - Perception, Cognition, ...
- Techniques/Algorithms
 - Focus+Context, Small Multiples, Force-Directed Layout, MDS, Treemaps, Semantic Zooming, ...
- Data Types
 - Graphs/Trees, Tables, High-Dimensional, Text, ...
- Domains
 - Biology, Software, Journalism, Networking, ...
- Evaluation
 - one lecture (common case)
- ∎ common case: grab bag. me too! (now)

Current Topics

- Intro
- Design Studies
- Fundamentals
- Perception/Memory
- Color
- Statistical Graphics
- Multiples/Interaction
- Space/Layers/Order
- Navigation/Zooming
- Focus+Context
- High Dimensionality
- Graphs/Trees
- User Studies

Current Structure

first half: they read, I lecture. core material.

- second half: they present
 - student presentations on additional material that others not required to read
- second half: they do projects. types:
 - programming
 - problem-driven
 - technique-driven
 - implement system from research literature
 - analysis: use existing tool(s) to analyze datasets
 - much longer writeup
 - course thus accessible to nonmajors. a few each year.

survey

Beyond Technical Content: Research Skills

- as central as content material for grad course
- reading research papers
 - several dozen
- writing technical material
 - reading questions
 - project proposal
 - final report (in VisWeek research paper format)
- giving technical talks
 - presentations on topic of their choice
 - project updates
 - final presentation
- reading reviews
 - I give detailed written comments
 - at level of paper review for final material
 - includes both style and content

Biggest Weakness: No Synthesis Text

recurring eval theme: reading load much too heavy

- 5 readings/class * 2 classes/week * 6 core weeks
- no textbook with sufficient synthesis
 - Ware textbook great for cognitive principles
 - not for communicating what we as a field have learned over past 20 years
 - original readings usually have far different intent than what I want students to think about
- writing textbook now
 - then will restructure course considerably
 - more time for design exercises once reading load lighter

Rethinking Topics: Beyond The Grab-Bag

principles

- design process, visual encoding, interaction, general
 - 2009 nested model: address evaluation-as-carbuncle

techniques

- composite views
 - spatial ordering, additional channels, pixel-oriented, layering, glyphs
- adjacent views
 - linking between views, types of multiples
- data reduction
 - overviews, aggregation, filtering, navigation, focus+context, reducing dimensionality

practice (data types)

graphs, trees, tables, text, geographic, spatial fields

Material

book

- summary chapter test-driving book structure available now
 - appears in Shirley ugrad graphics textbook, 3rd ed
 - freely downloadable, thanks to AK Peters http://www.cs.ubc.ca/labs/imager/tr/2009/VisChapter/
- full book to come
 - hope to have teachable draft by fall 2011
- all course material available online http://www.cs.ubc.ca/~tmm/courses/infovis
 all 7 years: readings, lectures, demos, projects, ...

Logistics

Take 1

structure

- readings spread across through term
- projects in second half of term
- students pick which topic to present
- each topic two days:
 - first two student presenters
 - then I lecture
- grading: 50% project, 35% presentation, 15% participation

Take 1 Failure Modes

- projects all on simpler stuff from first half of class, not all the cool stuff at the end
- students horribly bored by their colleagues presenting on material they'd just read
- my lectures require lastminute readjustment for good coverage w/o repetition
- course not accessible to nonCS students since requires programming for projects

Take 2

- first half: they read, I lecture. core material.
- second half: they present, they do projects
- student presentations on additional material that others not required to read
- grading: 50% project, 25% presentation, 15% participation, 5% assignment
- projects can be programming or analysis
 - analysis: use existing tool(s) to analyze datasets, much longer writeup
 - course thus accessible to nonmajors. a few each year.

Getting Them To Do Readings

- Take 2 failure mode: they don't do the reading
- heavy reading load: 5 readings/lecture, 2 lectures/week, 1st 6 weeks
- anon eval: "lectures covered material so well I didn't have to do reading". sigh.
- fix: 75% of participation grade is written questions
 - due 2 hrs before lecture
 - one question/comment per reading
 - Take 3 failure mode: incoherent/thoughtless questions
 - fix: graded by buckets: zero, poor, ok, good, great
 - show them examples of each bucket on first day
- ideally: read (and grade) before lecture
 - bring highlighted printout of Qs to raise interesting points during lecture

Project Structure

- Take 1 failure mode: feedback from me about project problems too late
 - fix: mandatory meeting(s) with me before written proposals due
- topic: I have page of project suggestions, but most projects self-initiated
 - some dataset/task they care about
 - I highly encourage tie-in to current/proposed thesis research
- presentation does not have to be on project topic, but can be
- groups of 2 allowed, a few each year
 - I see no quality correlation with group vs. individual

Adding Structure for Grading

failure modes:

- felt too subjective and hard to be consistent
- my expectations clearest in retrospect
- fix: add more detail in grading rubric in year i, add more detail to expectations for structure in year i+1

project breakdown, proposal structure

- 25% Presentations
 - Content Summary 50%, Synthesis/Critique 20%, Presentation Style 15%, Materials Preparation 15%
- bucket grades again: zero, poor, ok, good, great

Outcomes

- doing well in course highly correlated with doing well with me in research
 - decide in advance how many slots I have each year
 - go through in order of class rank, offer slot, stop when full.
- later publication not a primary goal
 - a few projects become VisWeek posters
 - no project has become a paper
 - students who work with me typically move on to something more substantial
 - students who work with somebody else don't have time to polish enough for a paper