Reconnaissance and Recommendation: Wayfinding Through Data With Visualization

Tamara Munzner

Department of Computer Science University of British Columbia

Visualization in Data Science 2023 keynote 23 Oct 2023, Melbourne Australia

http://www.cs.ubc.ca/~tmm/talks.html#vds23

DESIGNING for PEOPLE

<u>@tamaramunzner</u>

Extended analogy

- wayfinding through the world with road trips
- wayfinding through data with visualization

https://unsplash.com/photos/2oYHfuRe4OU

Questions in road trips

- where are we?
- what's here?

• are we there yet? are we lost?

http://www.cs.ubc.ca/~tmm/talks.html#vds23

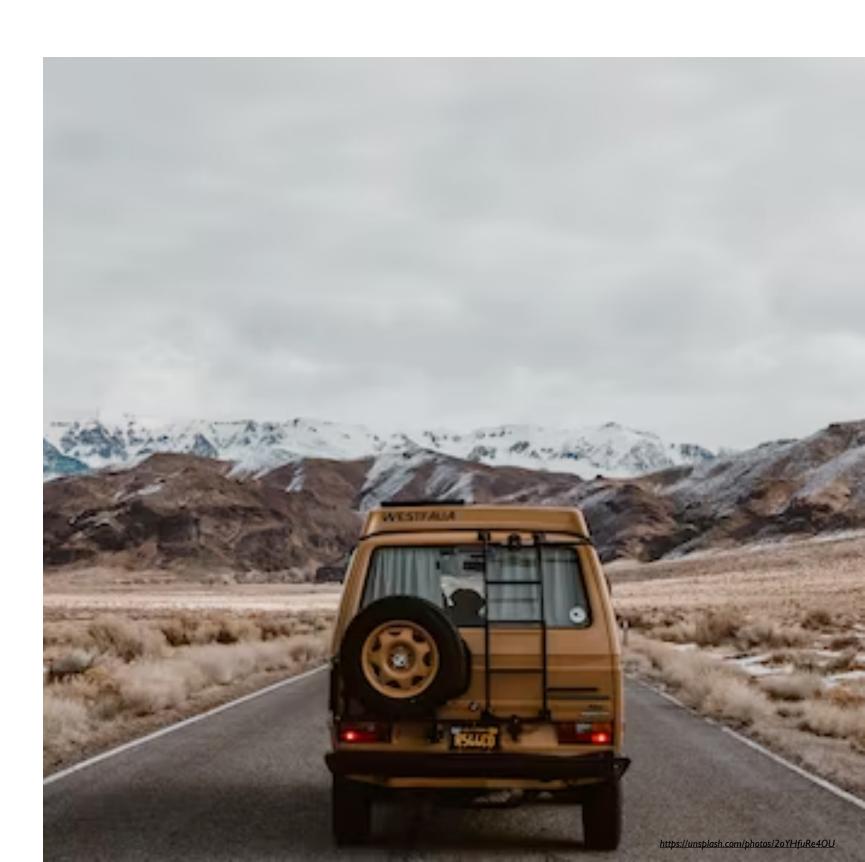
https://unsplash.com/photos/2oYHfuRe4OU

Questions in road trips - and visualization in data science!

- with each VDS project, addressing more questions
- where are we?
 - Data Reconnaissance & Task Wrangling
- what's here?
 - -Automatic Encodings through Recommendation
- are we there yet? are we lost?

-Visual Assessment of ML Training Completion & Quality

http://www.cs.ubc.ca/~tmm/talks.html#vds23



Uncovering Data Landscapes through

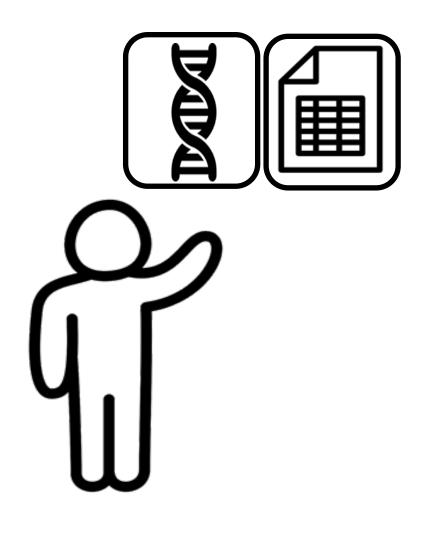
Data Reconnaissance & Task Wrangling

https://amcrisan.github.io/assets/files/papers/ Data_Recon_and_Task_Wrangling.pdf

Uncovering Data Landscapes through Data Reconnaissance and Task Wrangling *Crisan, Munzner. Proc. IEEE VIS 2019, pp. 46-50.*

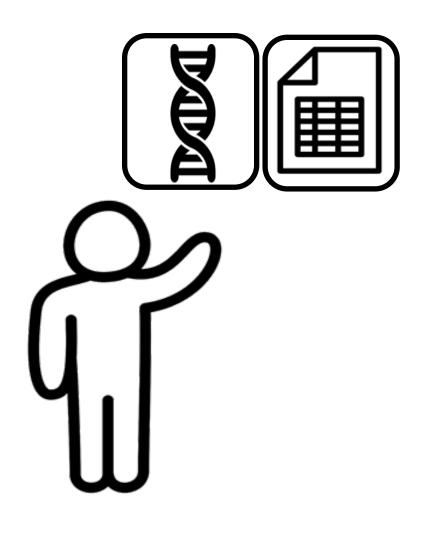
Anamaria Crisan @amcrisan UBC/Tableau

Tamara Munzner @tamaramunzner @<u>tamara@vis.social</u> UBC



Where are we?

Domain experts need help uncovering and reasoning about heterogeneous data landscapes

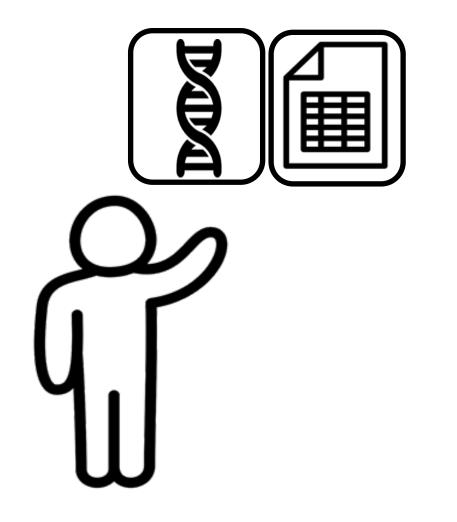


Data landscape

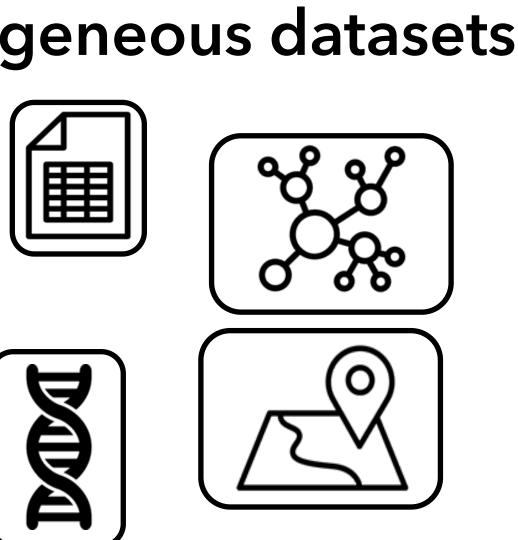
the very large space of existing heterogeneous and multidimensional datasets that are not yet understood by a specific person

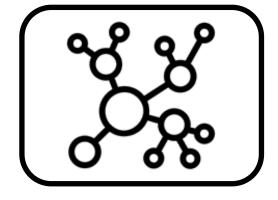
Data landscape : collection of heterogeneous datasets

Domain Expert's Currently Available Data

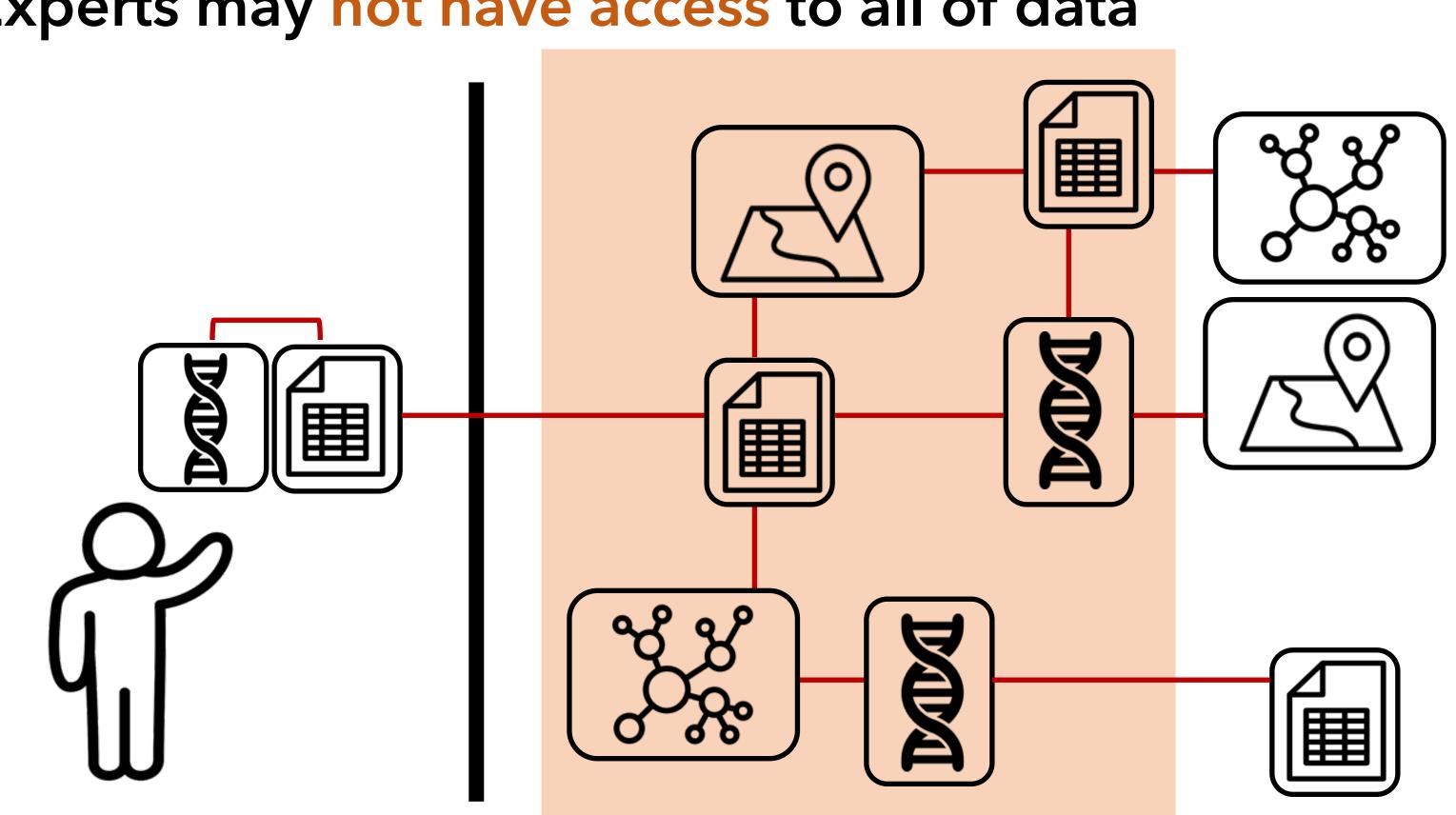


Unexplored Data

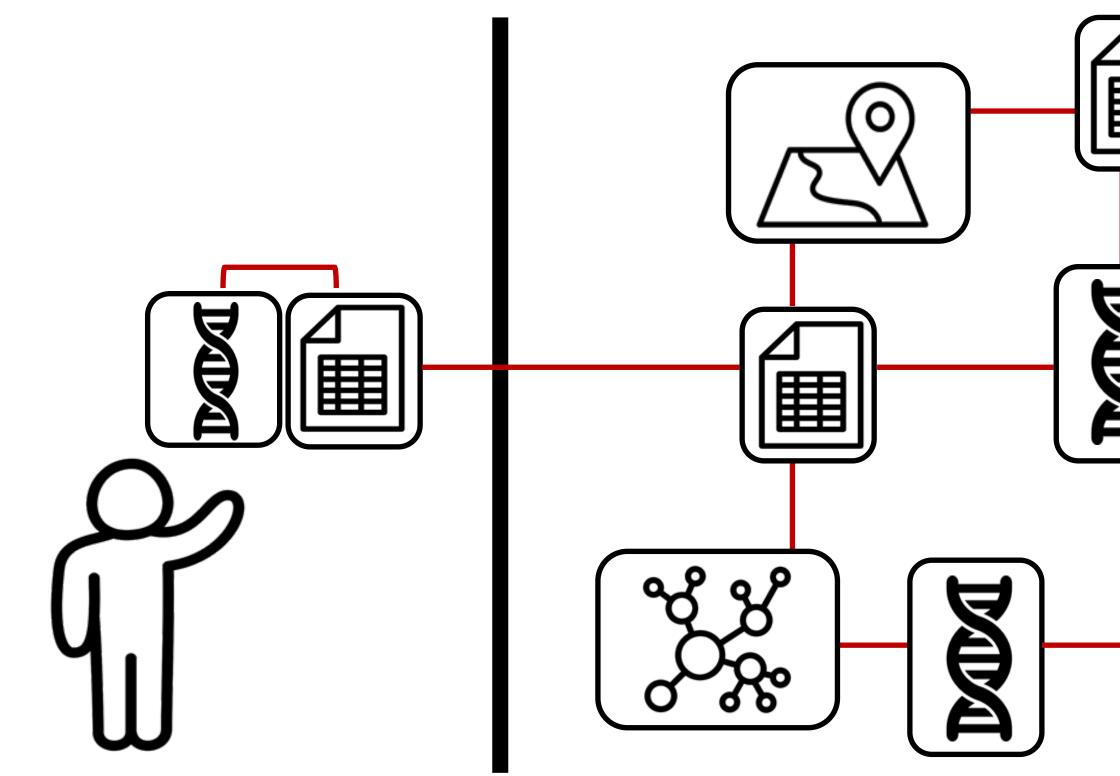




Experts may not have access to all of data



Experts may have not yet uncovered some data



Ο

New idea : Operational definitions for data reconnaissance and task wrangling

Data Reconnaissance

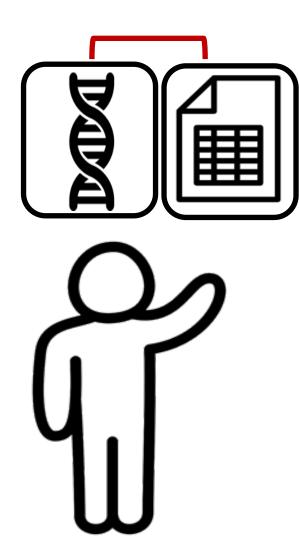
the process of uncovering an unfamiliar data landscape, including datasets that are known, available, unavailable, & unknown

Task Wrangling

the process of progressively forming a crisper notion of tasks and assessing whether available and known datasets are suitable

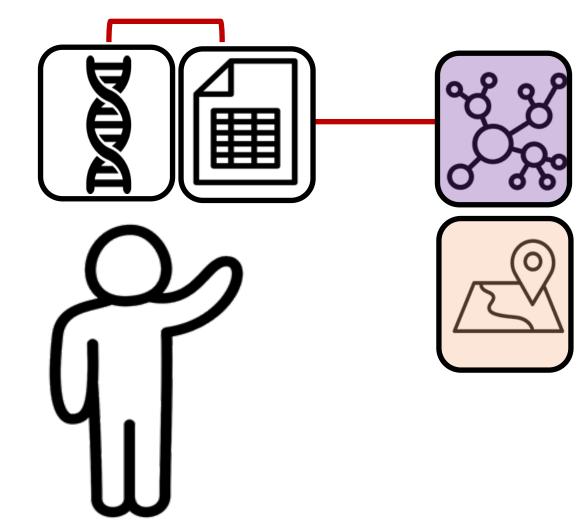
Data Reconnaissance

Some Data



Data Reconnaissance

Acquire additional data sources



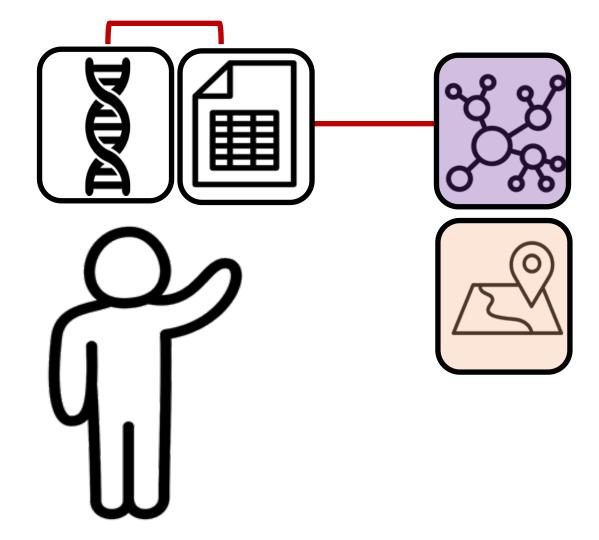
Analysis & visualization of available data sources supports acquisition of **new** data:

Acquire new dataset

Acquire available, but previously restricted, dataset

Data Reconnaissance

Acquire additional data sources



Analysis & visualization of available data sources supports acquisition of **new** data:

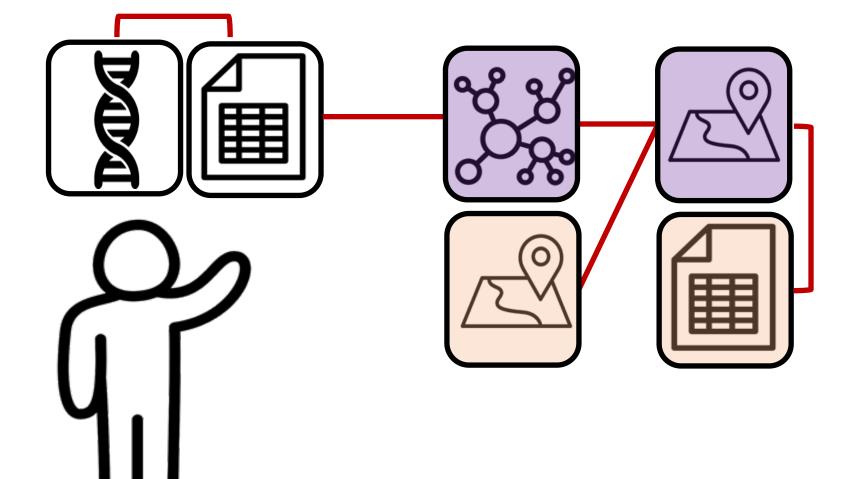
Acquire new dataset

Acquire available, but previously restricted, dataset

Crisan & Munzner. **On Regulatory and Organizational Constraints in Visualization Design and Evaluation. Proc BELIV 2016**.

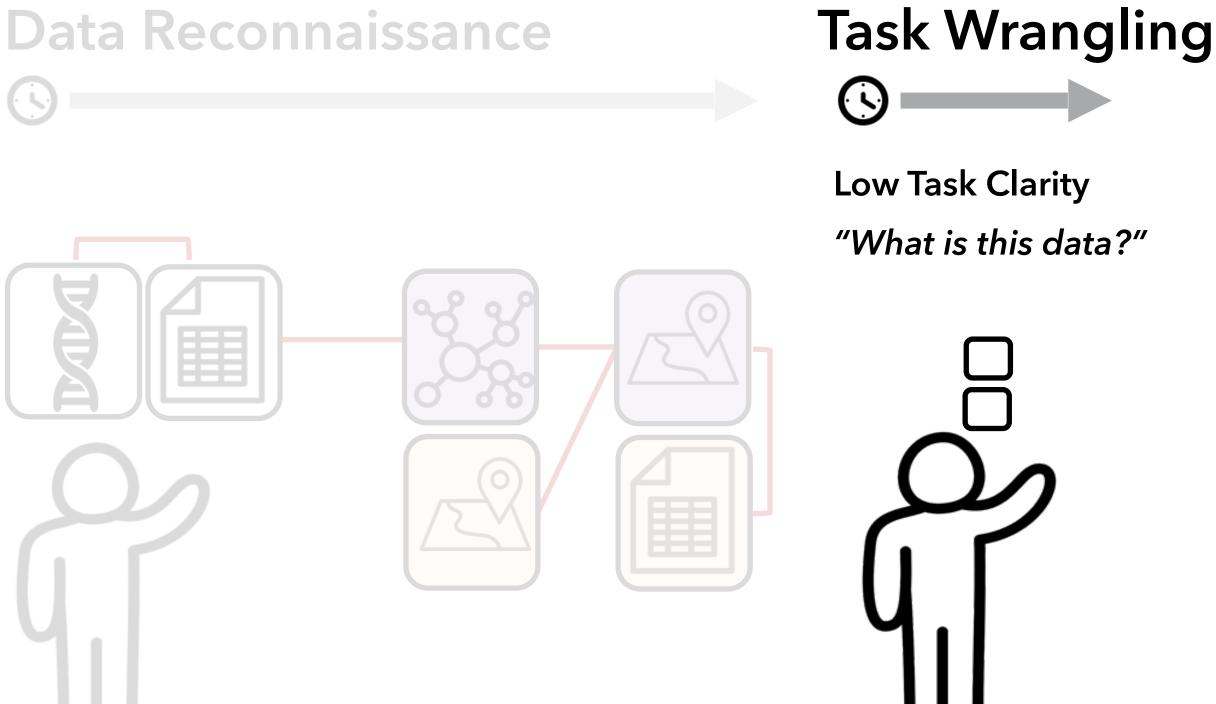
Data Reconnaissance

Arrive at a finalized data set

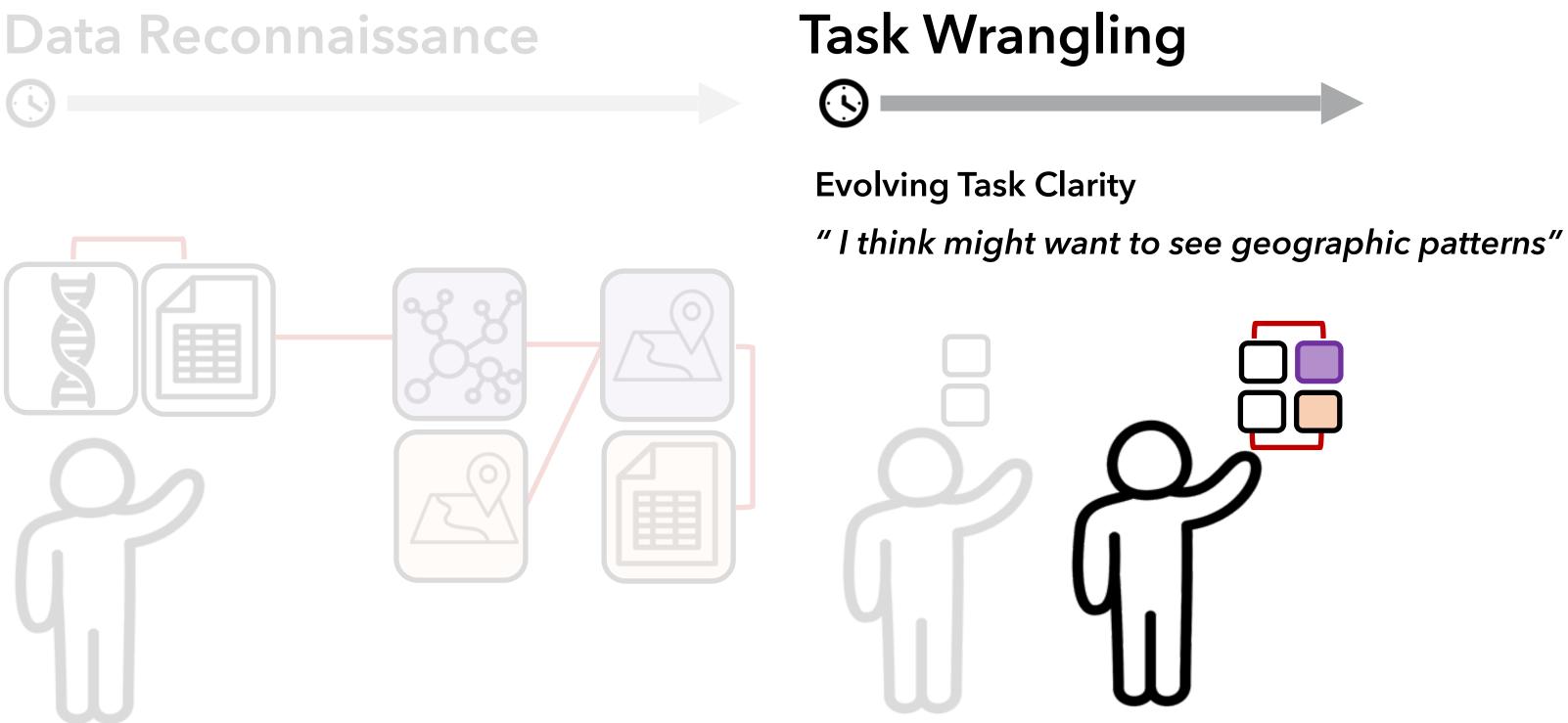


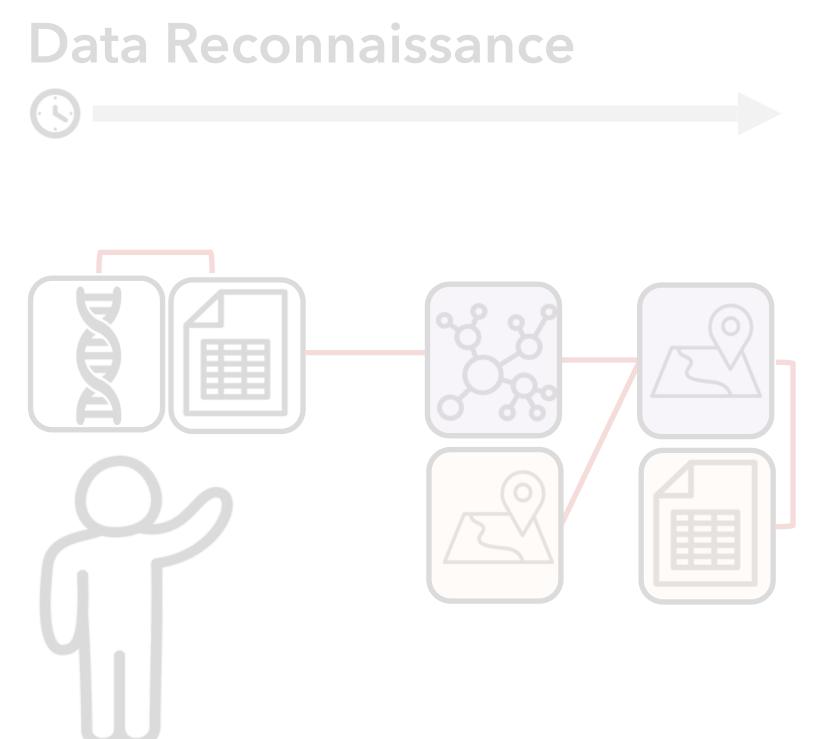
Finalized dataset can be

analyzed & visualized in depth



17

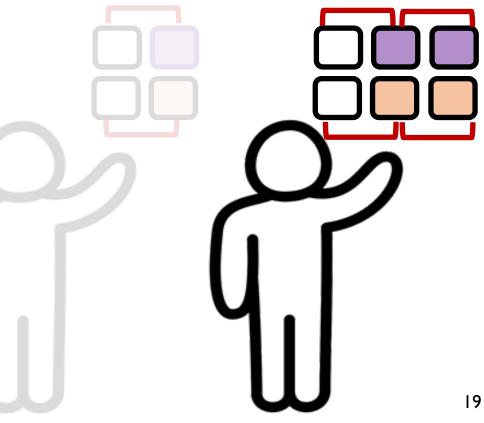




Task Wrangling

Refined Task Clarity connected genomic clusters over time"

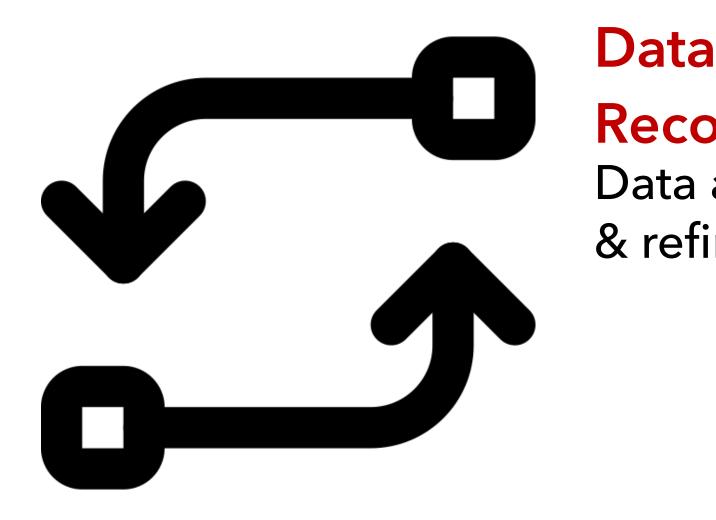
"I want to see the geographic relatedness of



Processes influence each other over time

Task Wrangling

Refined tasks guide the pursuit of data

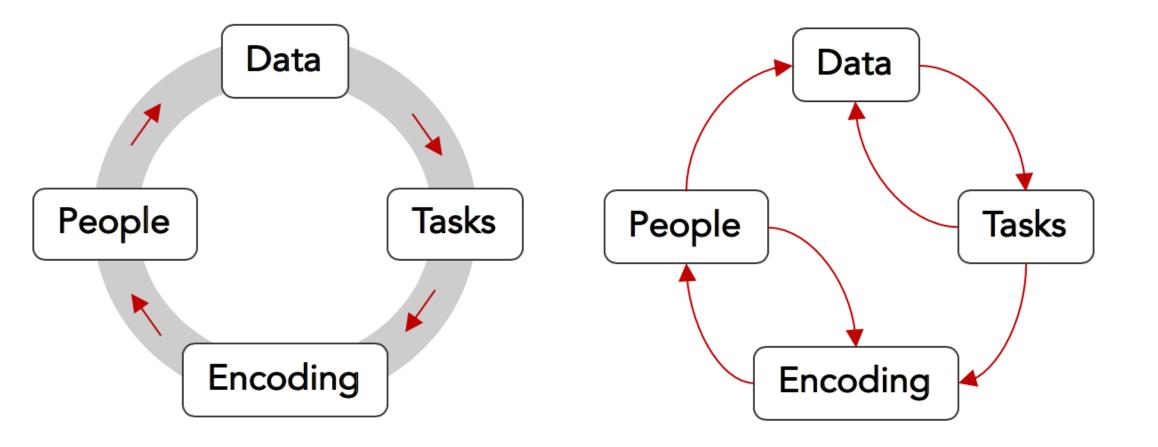


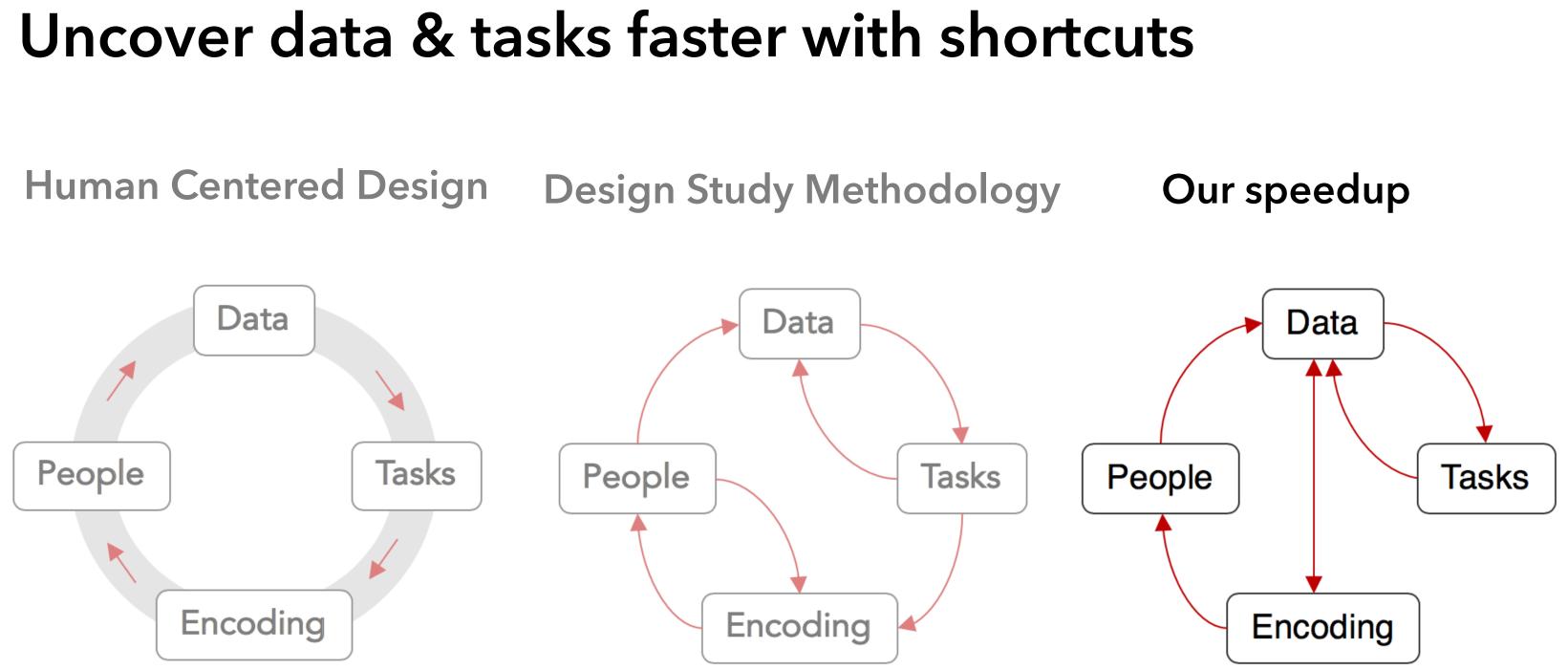
Reconnaissance Data access inspires & refines tasks

New idea : A conceptual framework for data reconnaissance and task wrangling

Existing methods can be slow

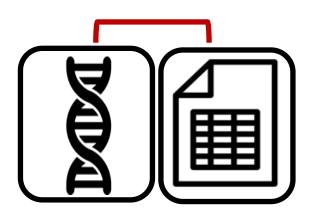
Human Centered Design Design Study Methodology

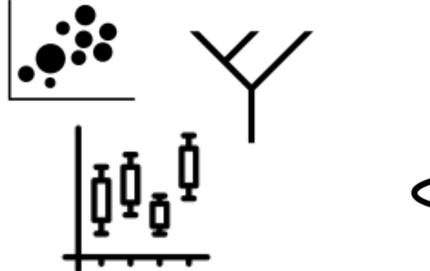


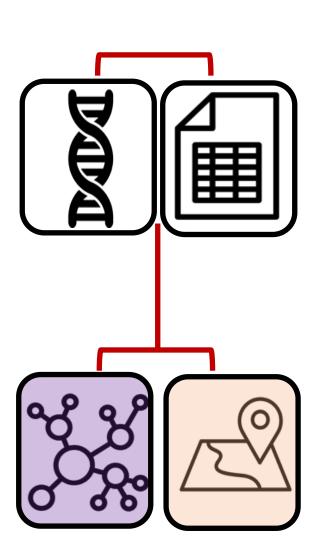


Steps in our conceptual framework

Acquire —>

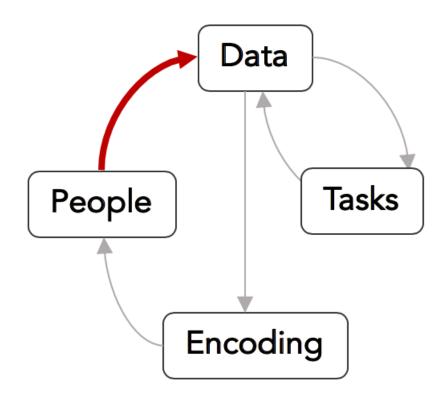


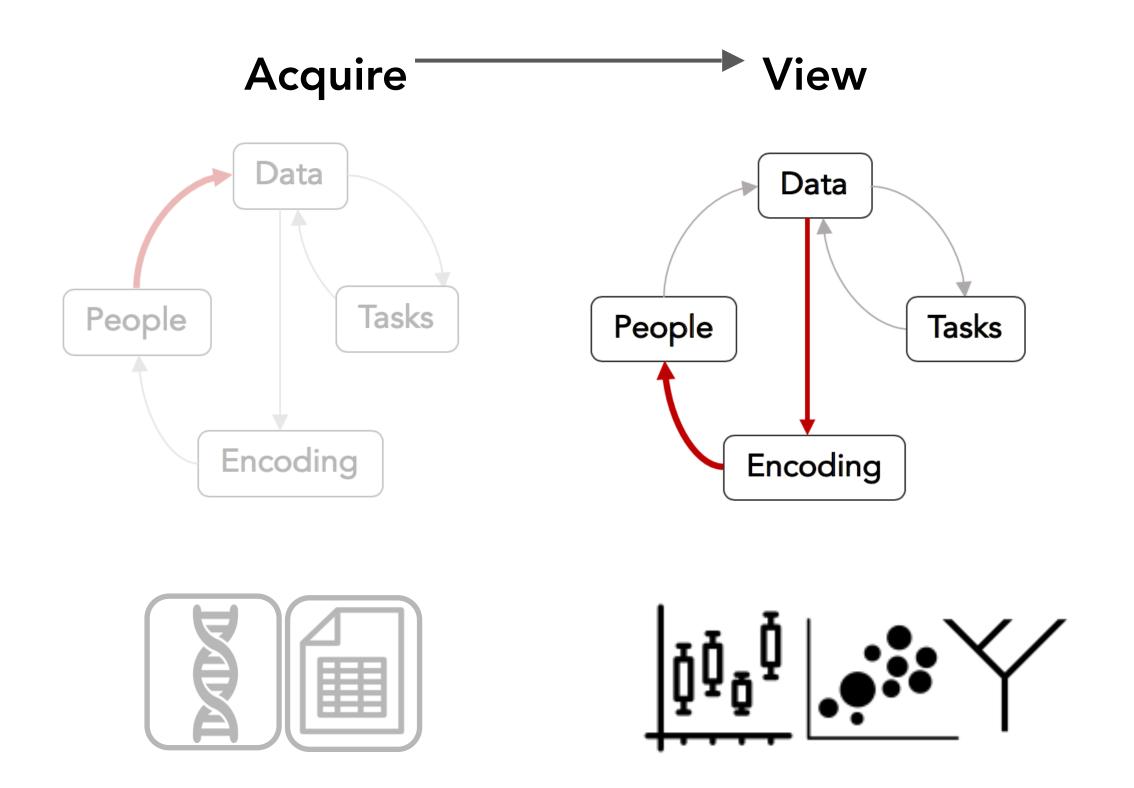


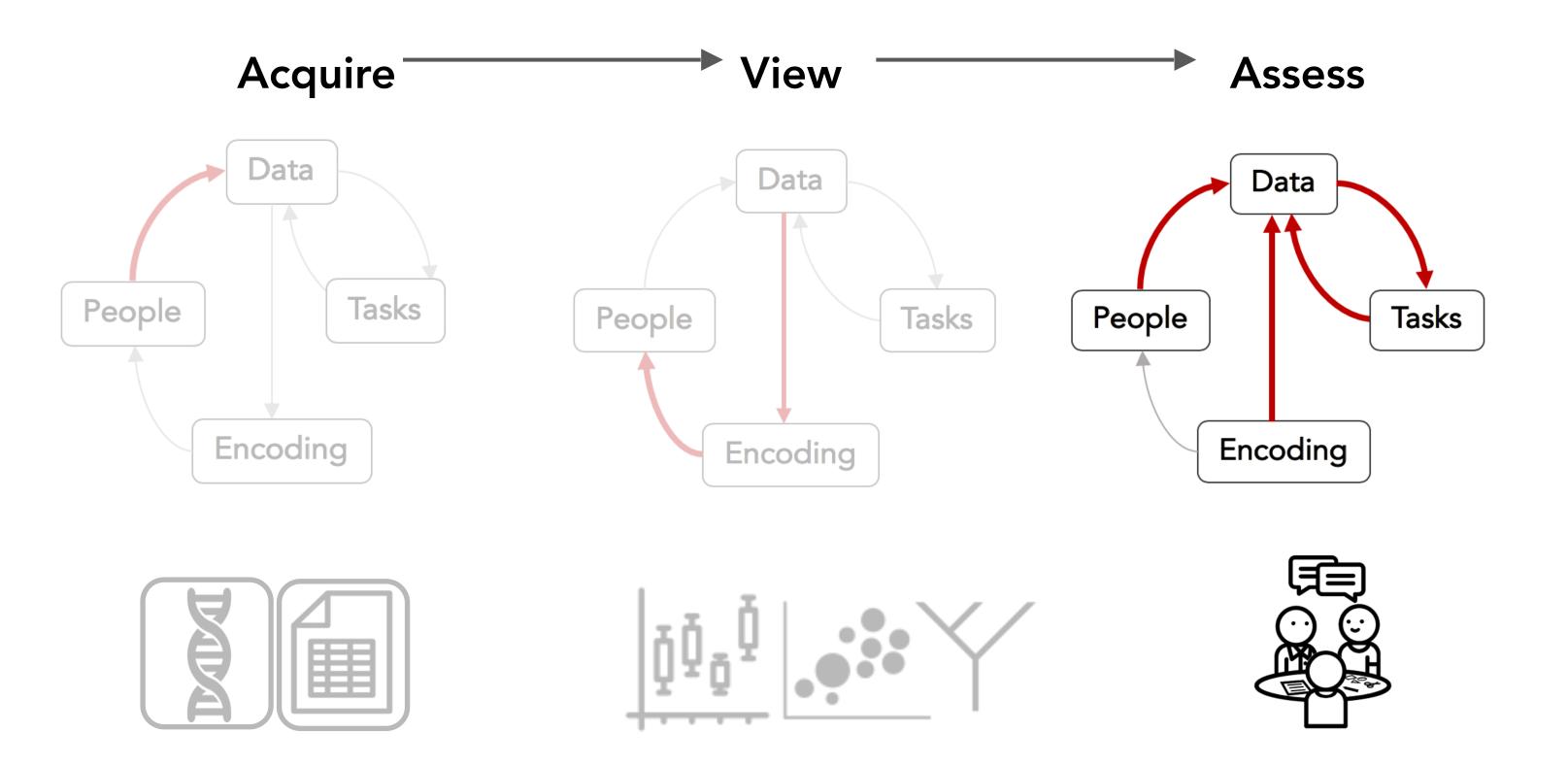


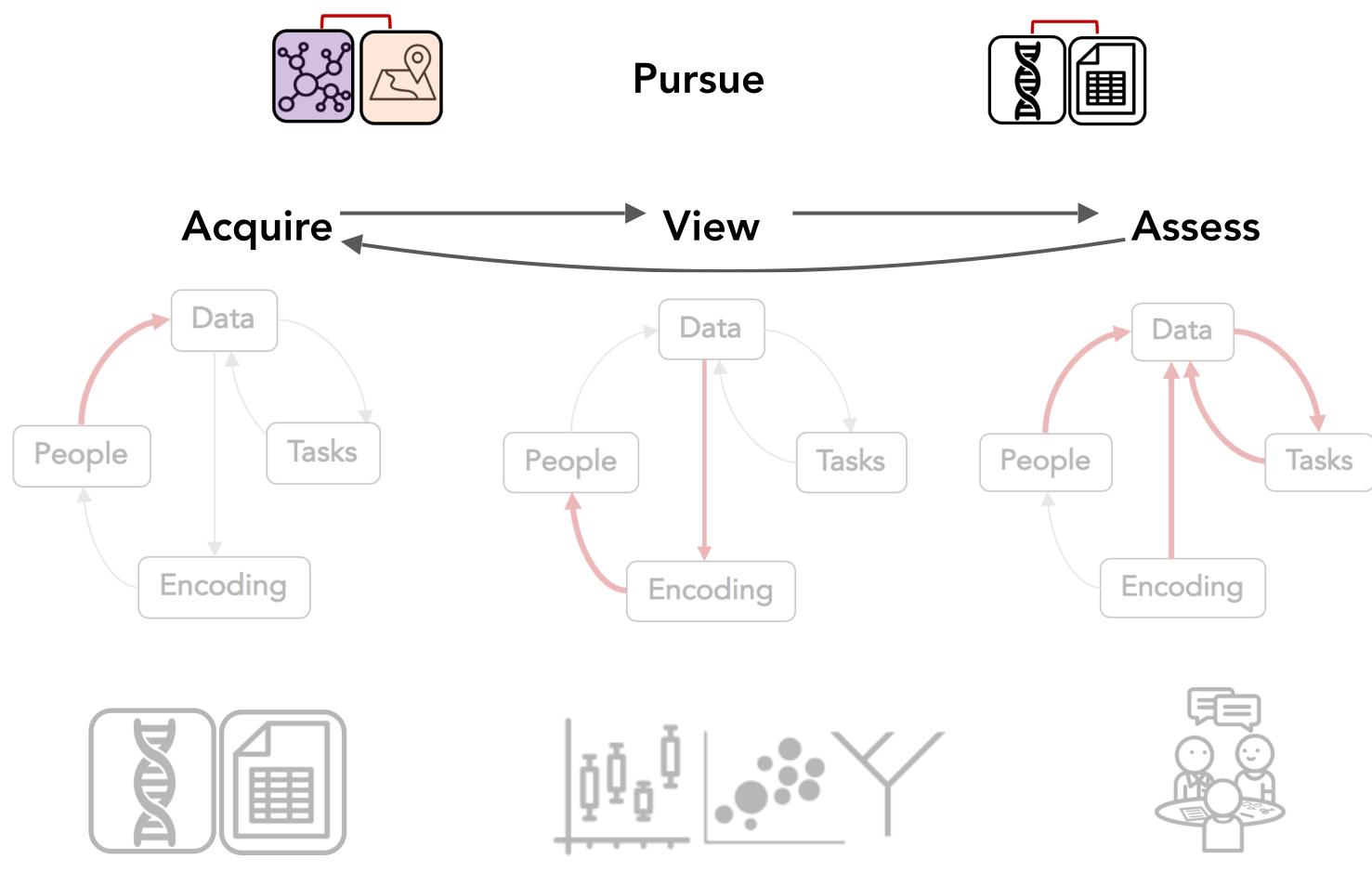
Pursue

Acquire

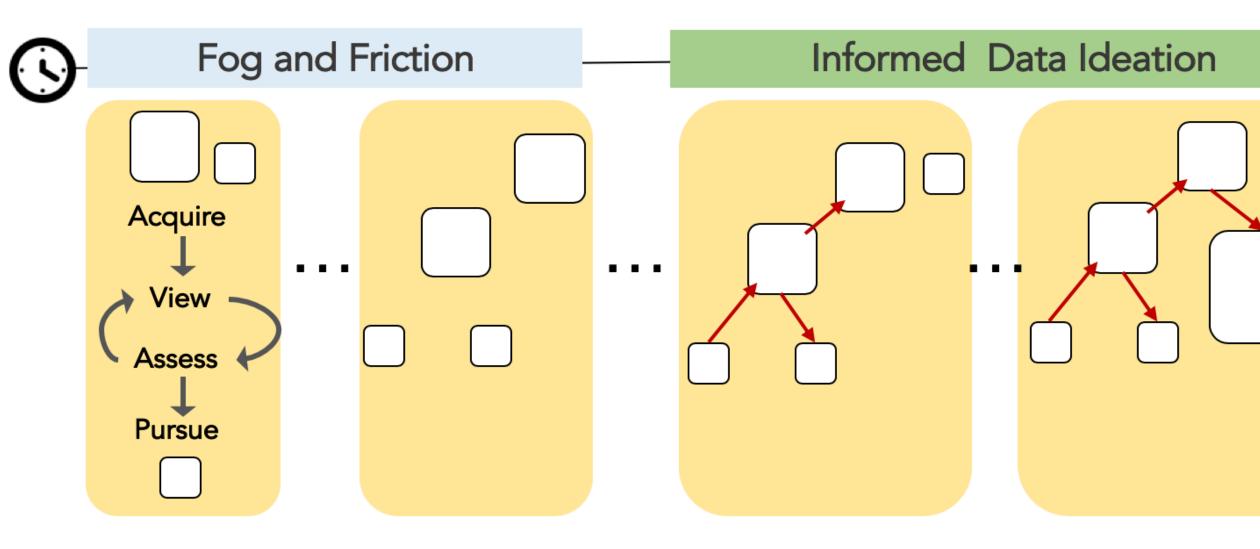




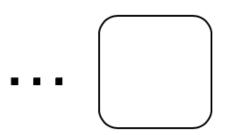




From unknown landscape to the final dataset



Final Data



After data finalized, could follow up with further work:

- use existing in-depth EVA tool
- create bespoke system through design study

Where do we go from here? Building systems suitable for data reconnaissance and task wrangling

Questions in road trips - and visualization in data science!

• where are we?

Uncovering Data Landscapes through
 Data Reconnaissance & Task Wrangling

- what's here?
 - -Automatic Encodings through Recommendation

http://www.cs.ubc.ca/~tmm/talks.html#vds23



GEViTRec:

Data Reconnaissance Through **Recommendation Using a Domain-Specific** Visualization Prevalence Design Space

https://www.cs.ubc.ca/group/infovis/pubs/2021/gevitrec/

GEViTRec: Data Reconnaissance Through Recommendation Using a Domain-Specific Visualization Prevalence Design Space. *Crisan, Fisher, Gardy, Munzner. IEEE TVCG* 28(12):4855-4872, 2022.

Anamaria Crisan @amcrisan **UBC**/Tableau

> Shannah Fisher **UBC/USask**

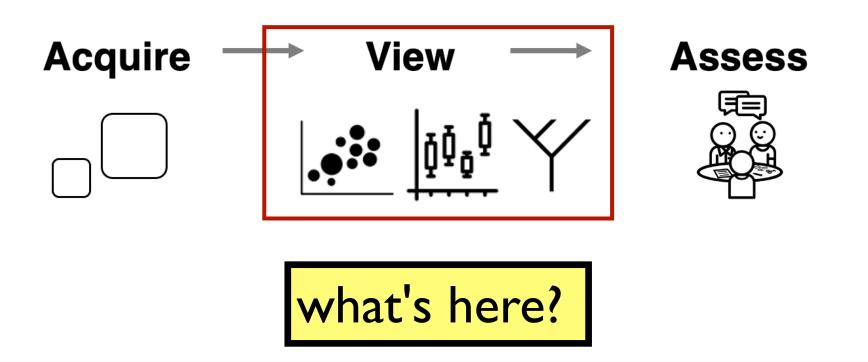
Jenn Gardy @jennifergardy UBC/BCCDC/ Gates Foundation

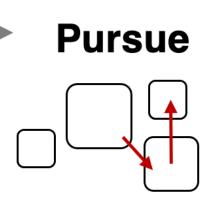
Tamara Munzner @tamaramunzner @tamara@vis.social UBC

Data Reconnaissance

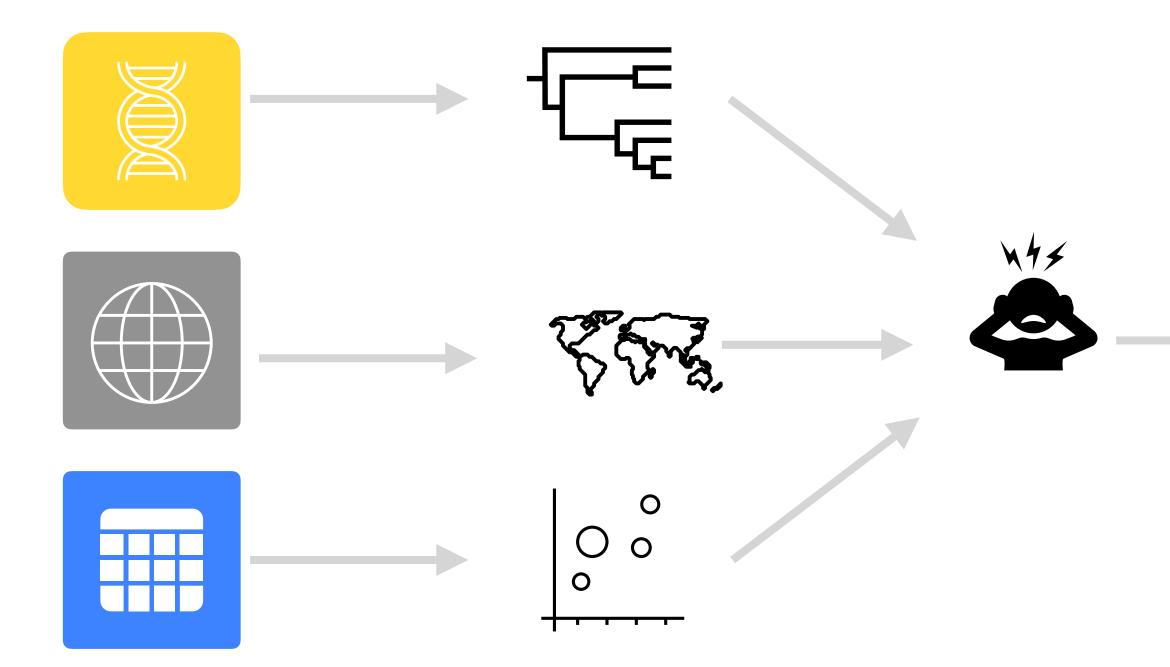
the process of exploring an unfamiliar data landscape; the very large space of existing heterogeneous and multidimensional datasets that are not yet understood by a specific person

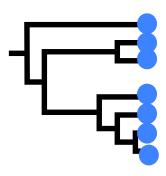
biggest need: accelerate this part

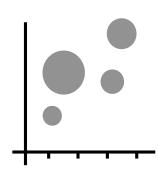




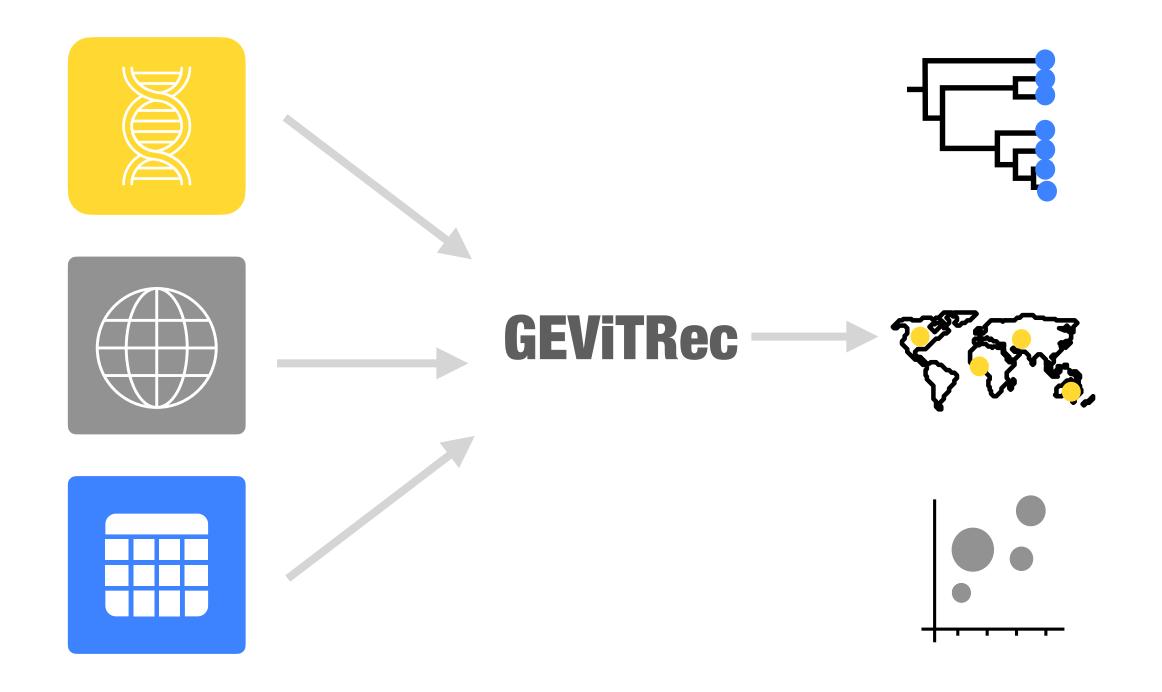
Manually Constructing Chart Combinations



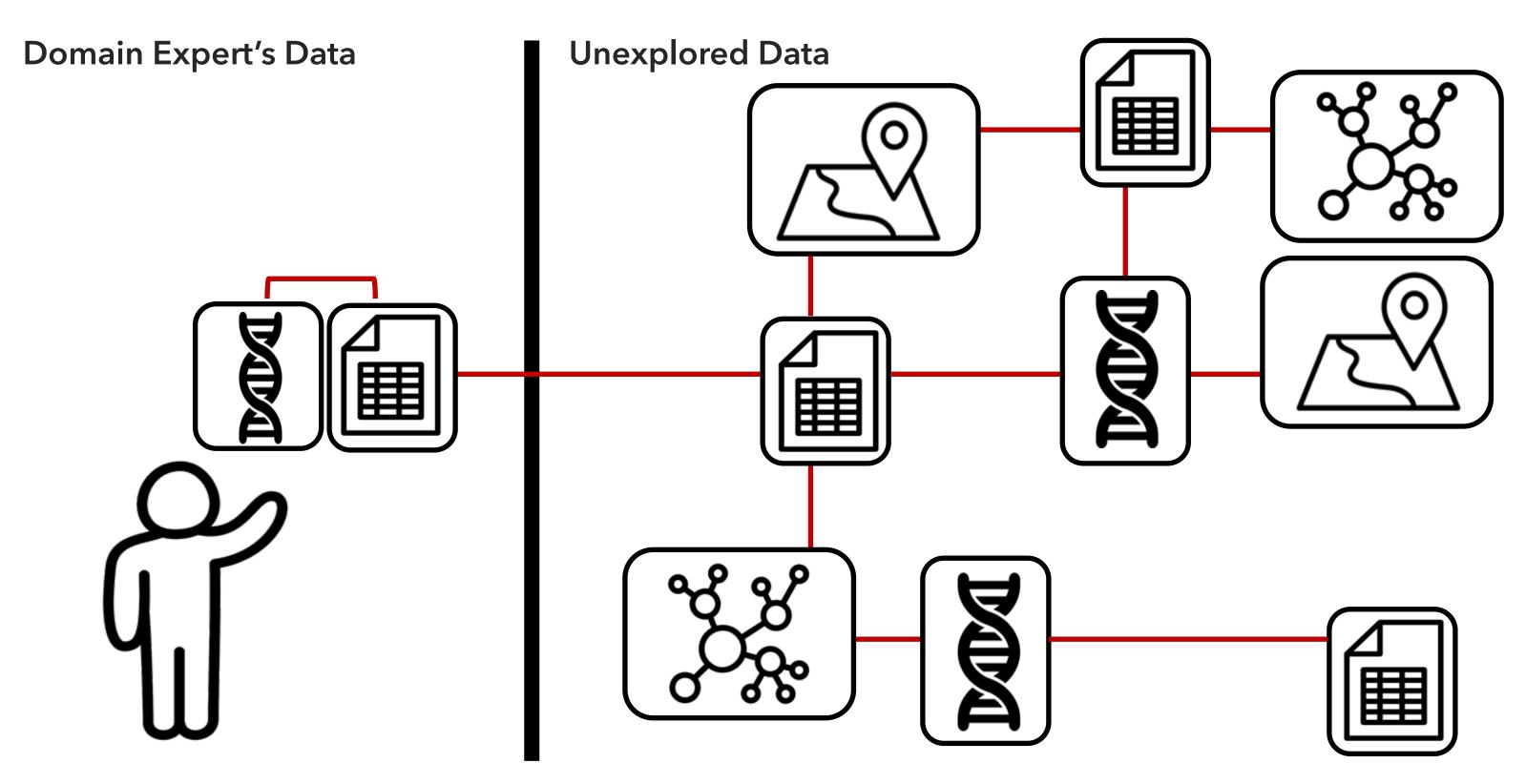




Automatically Constructing Visually Coherent Chart Combinations



How to connect datasets? Identify shared attributes!



How to show connections for data recon?

Visually Coherent Chart Combinations

that prioritize visual coordination of shared information between charts with respect to layout and consistency among visual **channels** (position, color)

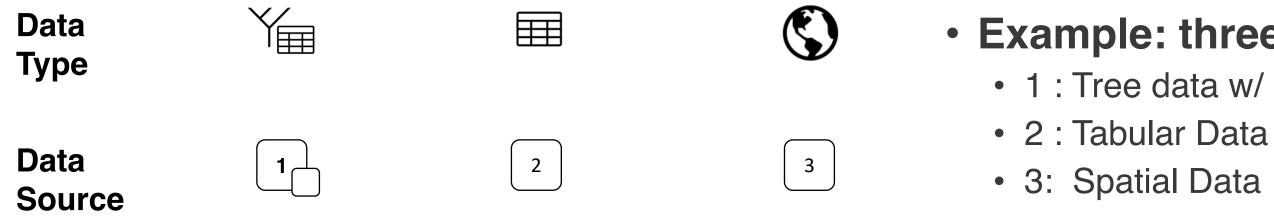
Fast to view Easy to disseminate

Static charts avoid interactive view coordination complexities and costs

New Idea: Visually Coherent Chart Combinations Through Gradual Binding

- Automatically coordinating static charts is not trivial
 - Cannot change encoding after chart rendered into box of pixels!
- Declarative approach of gradual binding
 - Initially generate partial specification using template
 - Modify specification in discrete stages, to enforce consistency of channels (color, position) according to desired combination
 - Pass final specification to rendering library
 - Simply concatenate resulting boxes of pixels to display

ivial 1 into box of pixels!



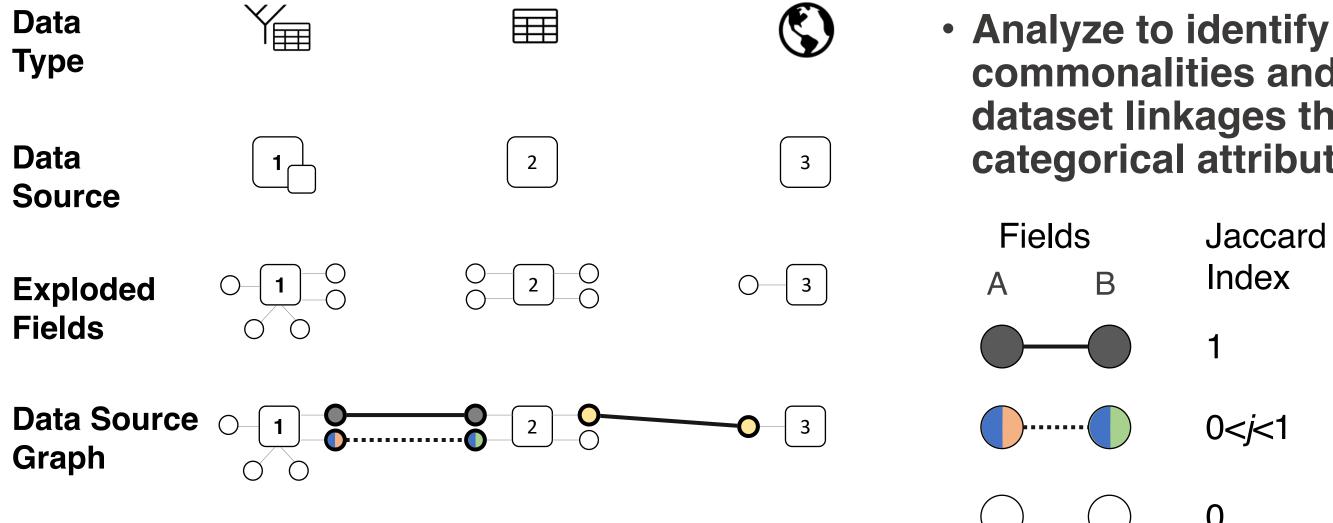
Example: three analysis datasets 1 : Tree data w/ associated tabular data 2 : Tabular Data 3: Spatial Data



'Explode' attribute fields extracted from data sources

= data source

= attribute field



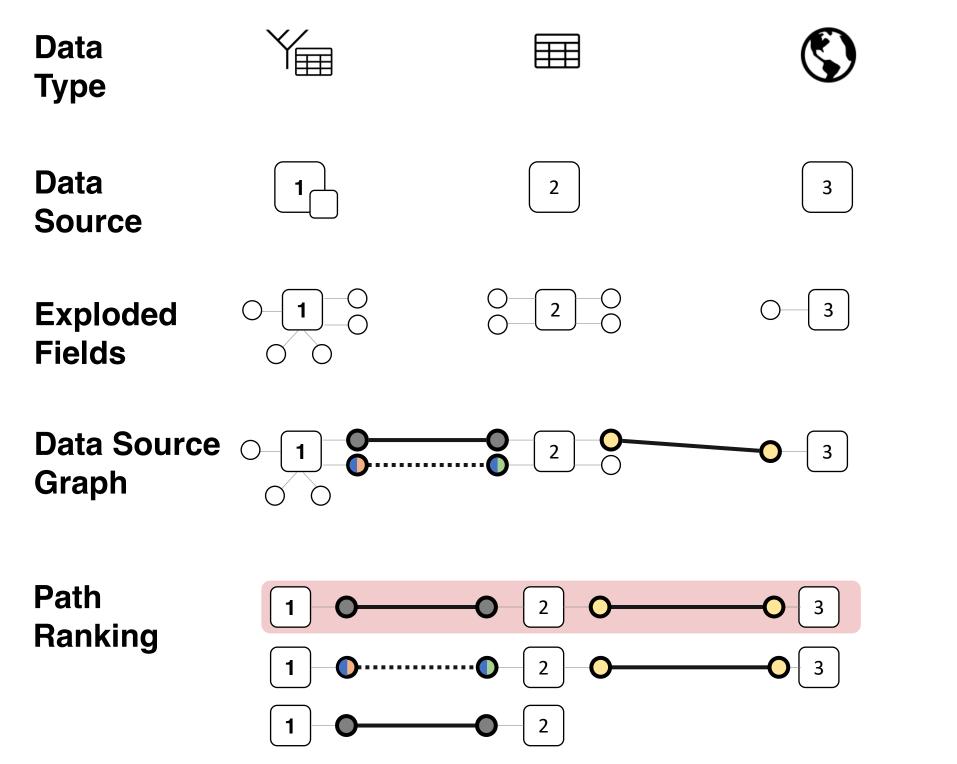
Input data is now

commonalities and create dataset linkages through categorical attribute fields

Jaccard	Linkage
Index	Туре

- 1 Exact
- Partial 0<*j*<1
- 0 None

modelled as a graph!



- - Strength of linkages
 - **Diversity** of data types
 - Relevance to domain
 - New idea: using domain prevalence design space in visualization recommendation

• Traverse graph: enumerate & rank paths linking all pairs of data, using three metrics

Domain Prevalence Design Space:

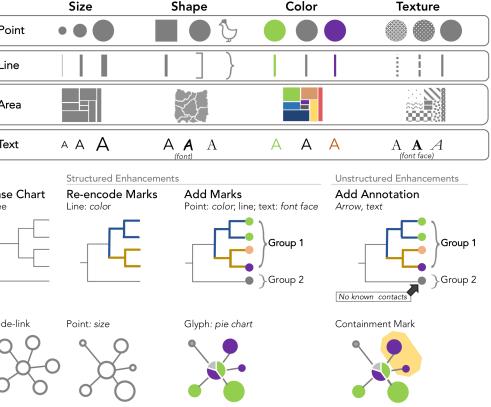
Captures full scope of visual encodings used by defineable set of experts, includes quantitative estimate for prevalence of each strategy within that domain

Domain-level answer to question of what's here?

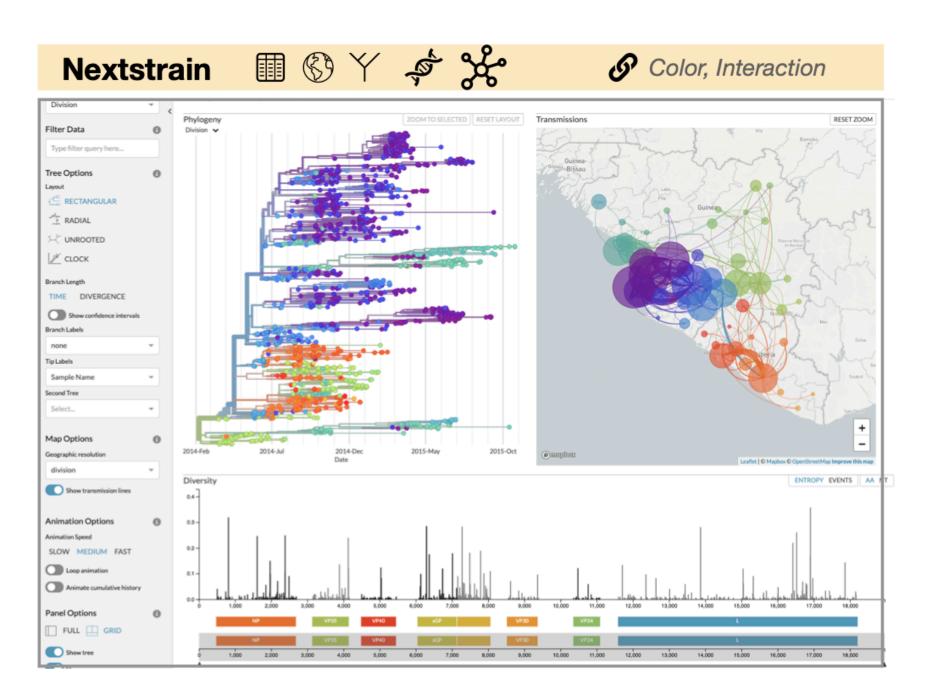
Common Statistical Charts				Tree Charts	_	Genomic Ch	arts	
Bar Chart Standard Stacked Divergen	t Special Cases • Epidemic Curve • Diversity Chart • LefSe Plot	Chart Special Cases • Bootscan • Kaplan-Meier • Skyline Plot	Scatter Plot Special Cases • Root-to-tip • Ordination Plot • Q-Q plot	Phylogenetic Ti Rooted (Linear &	ree Radial)	Genomic Mag Linear	P Radial	A
Distribution Plot Histogram PDF Boxplot		Colour C ann Category Stripe		Unrooted (Linear & Radial)		Alignment	Composition Plot	
elational Charts Node-link Orde-link Orde-link Orde-link Special Cases Orde-link Social network Molecular network Minimum Spar	Stream Absolut work nning Tree		Timeline	Dendrogram	Clonal Tree*	Sequence Log		
Flow Diagram Chord Diagram Sankey D	Diagram Geogra	I Charts ohic Map Choropi Charts # of charts			mage	ral Image	Miscellany	B
Combination Type	1	# of charts	Linkage type NA		r 📈		₫₫₫	
Composite	Many	1	Spatially Aligned			✓ =		
mall Multiples	1	Many	Chart Type & Data				000	с
Many Types .inked	Many	Many	Visual, but not spatial		ND		₫₫₫	1
Many Types General	Many	Many	NA				₽₽₽₽	
Complex Combinations	Many	Many	Context dependent			AND	₽₽₽₽	

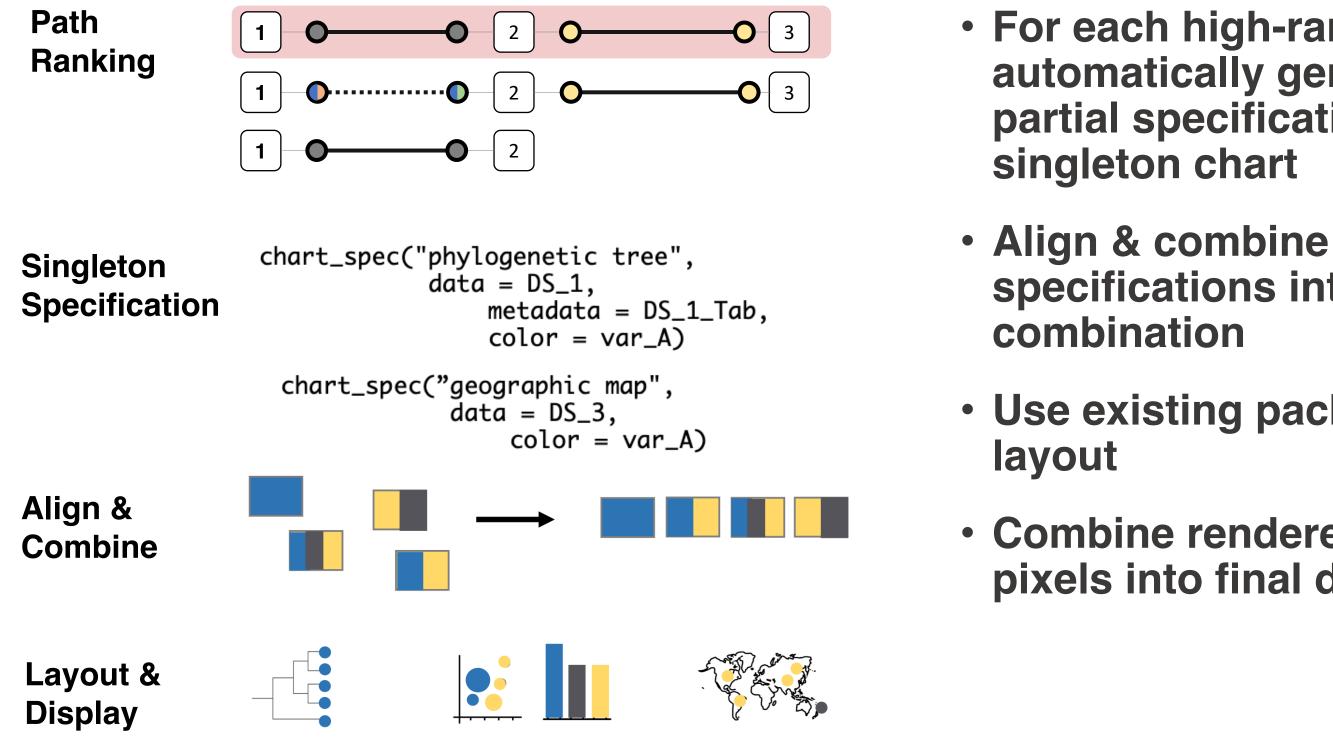
A Crisan, JL Gardy, T Munzner. A systematic method for surveying data visualizations and a resulting genomic epidemiology visualization typology: GEViT. Bioinformatics 35(10):1668-1676, 2019.

https://doi.org/10.1093/bioinformatics/bty832



Domain Context: Genomic Epidemiology





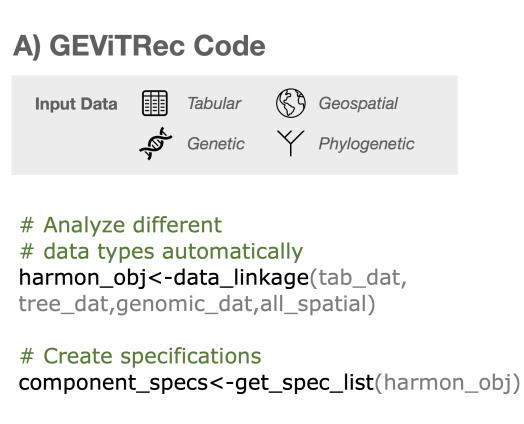
For each high-ranked path, automatically generate initial partial specifications for each

specifications into multi-chart

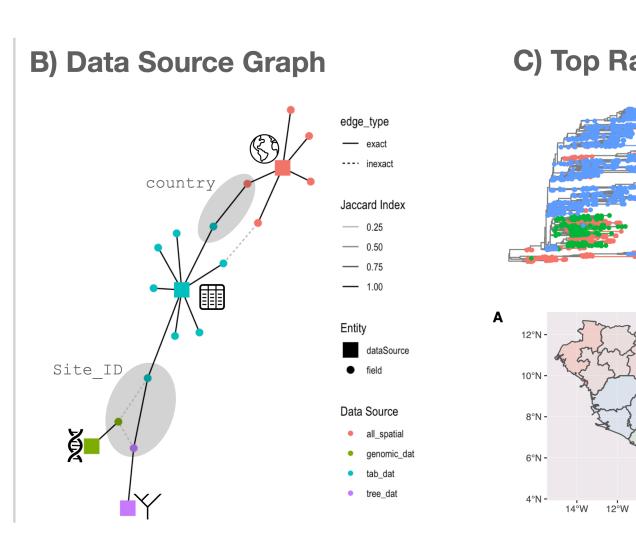
Use existing packages for

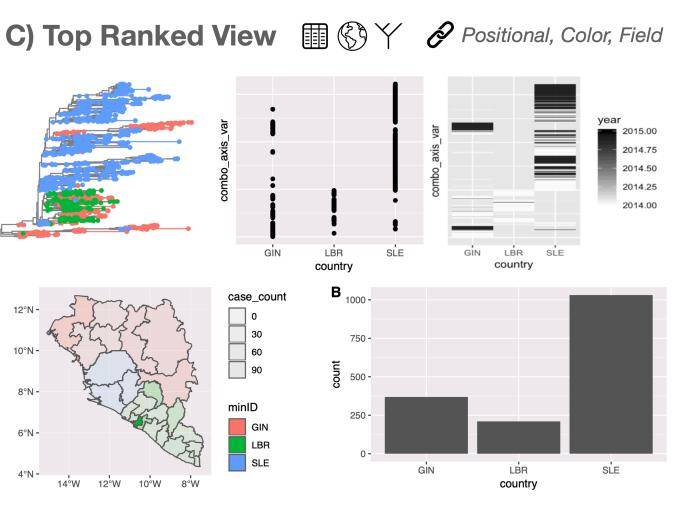
Combine rendered boxes of pixels into final display

- GEViTRec runs in R Markdown notebooks
- Example: 2013-2016 Ebola outbreak data



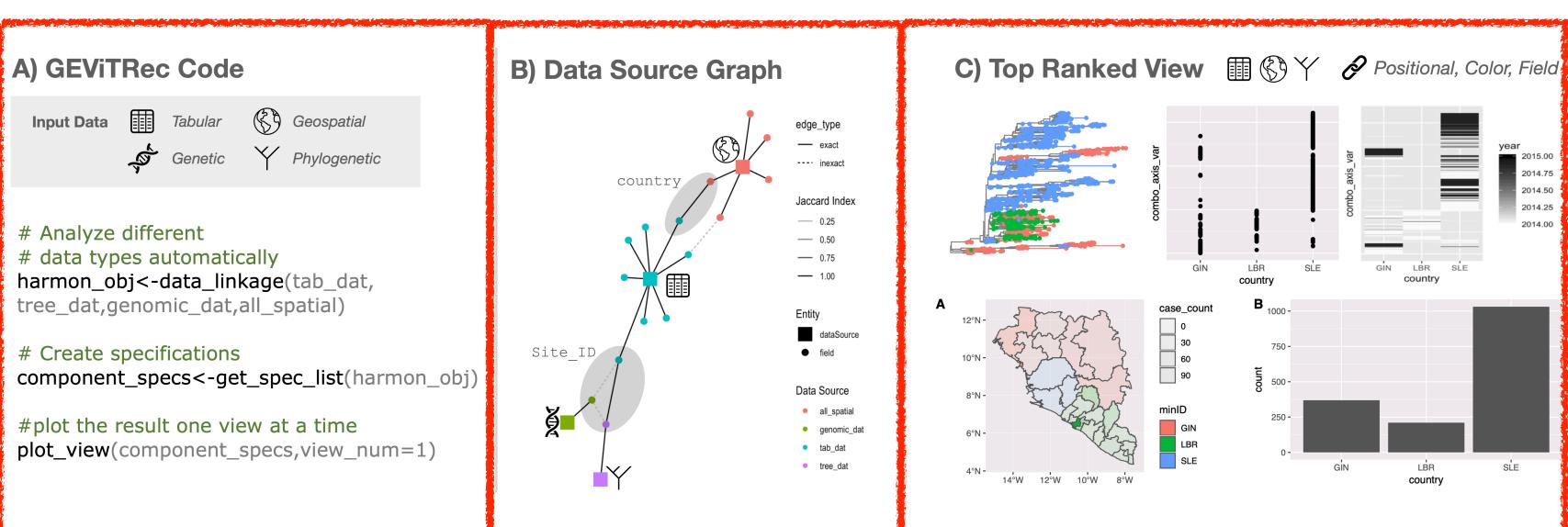
#plot the result one view at a time
plot_view(component_specs,view_num=1)

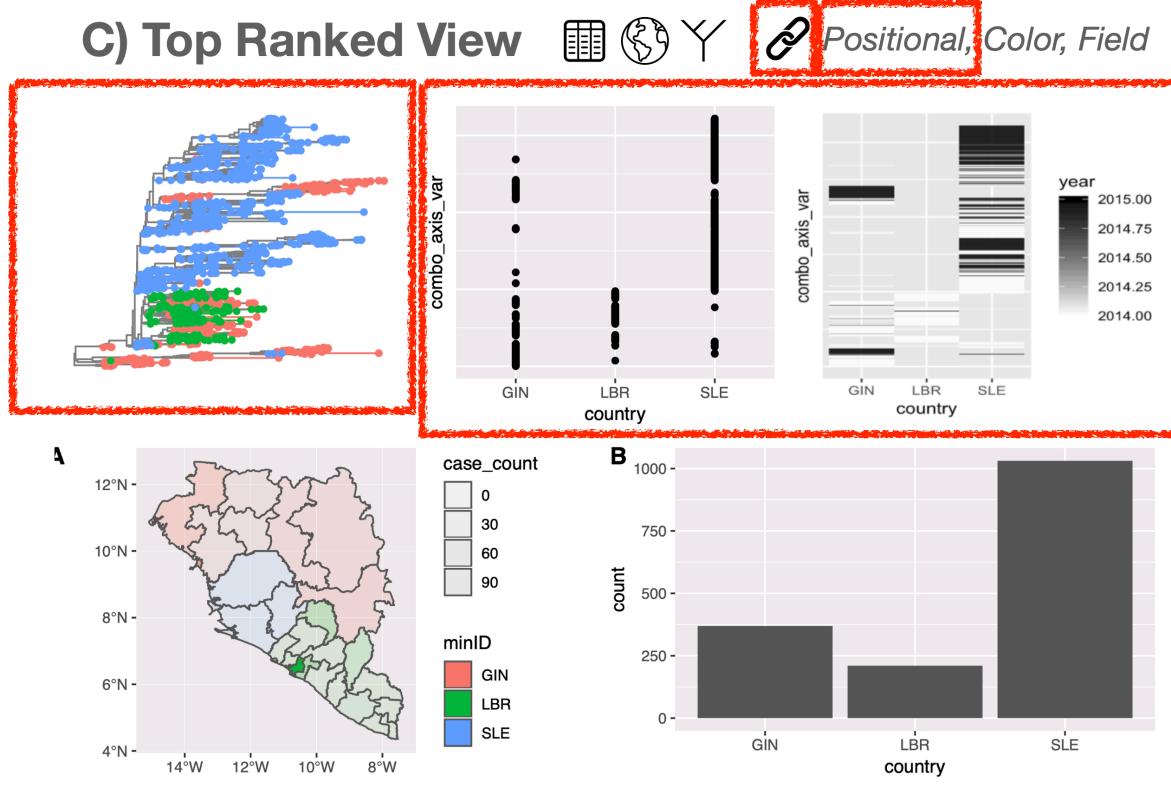


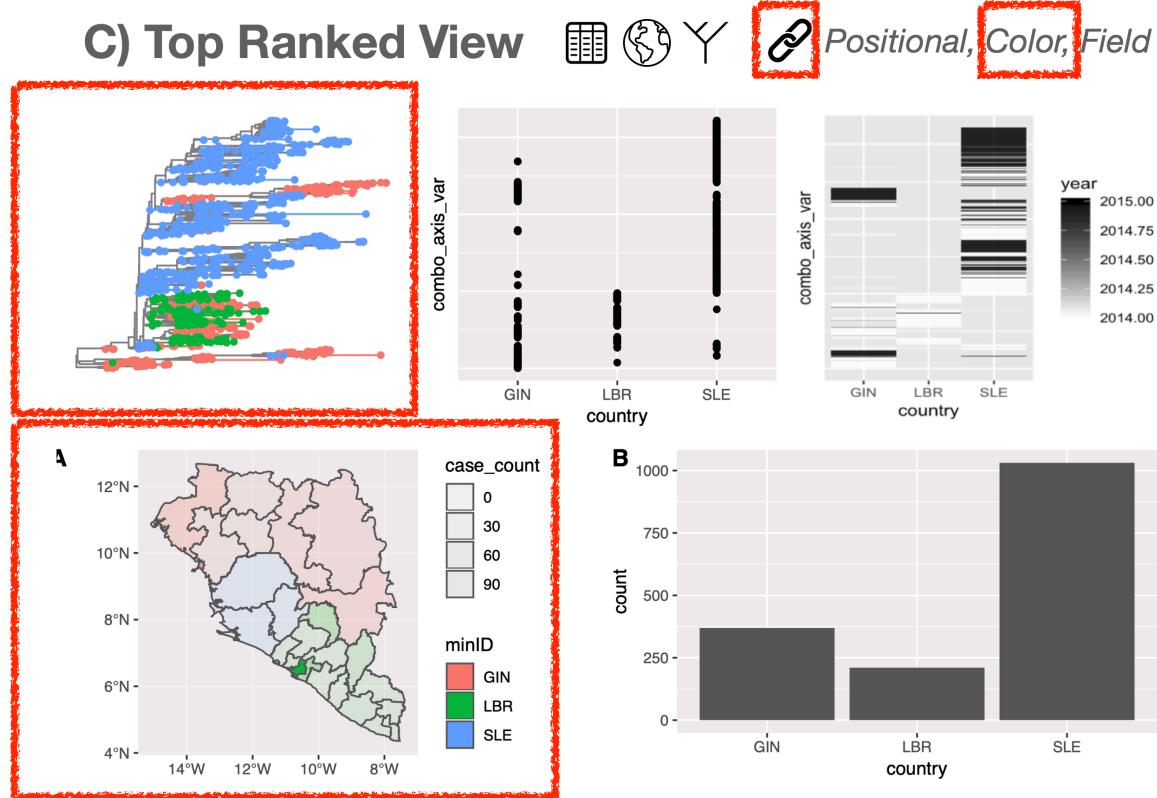


46

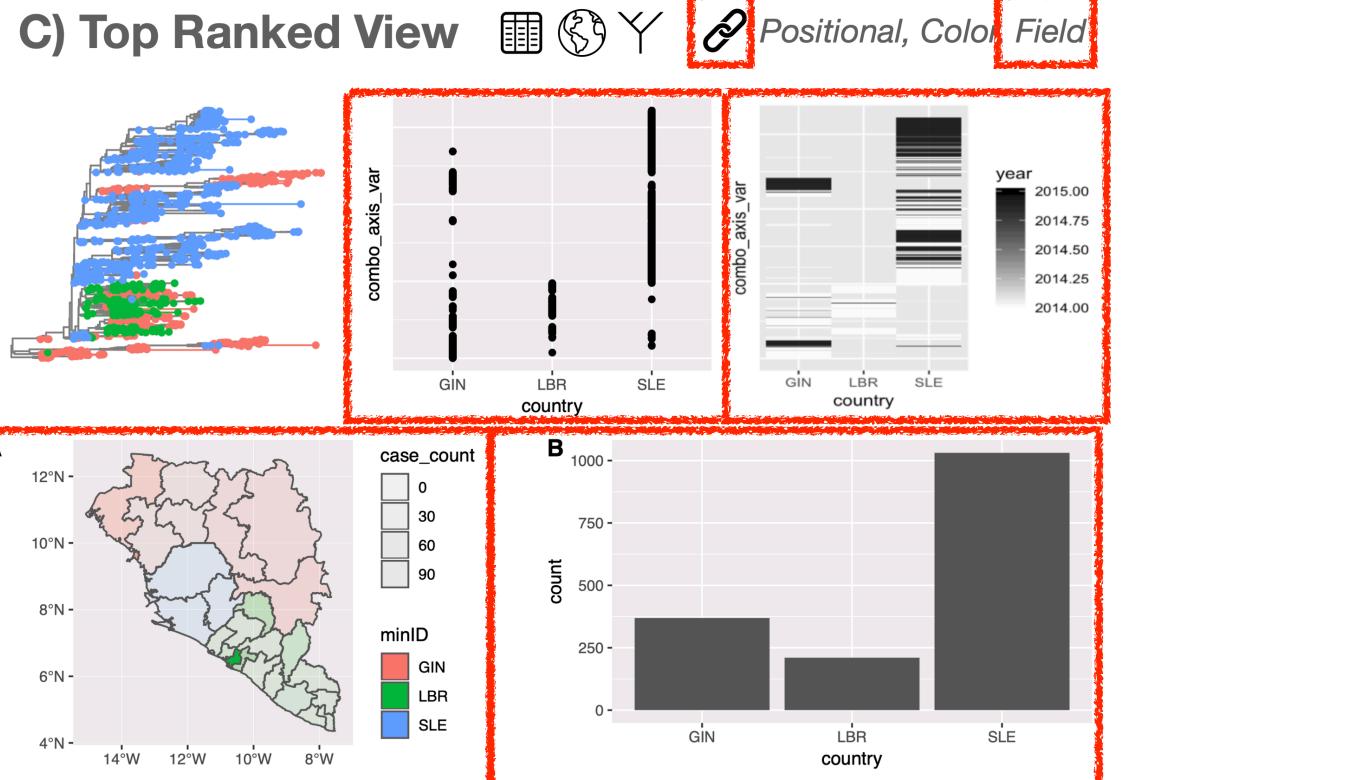
- GEViTRec runs in R Markdown notebooks
- Example: 2013-2016 Ebola outbreak data

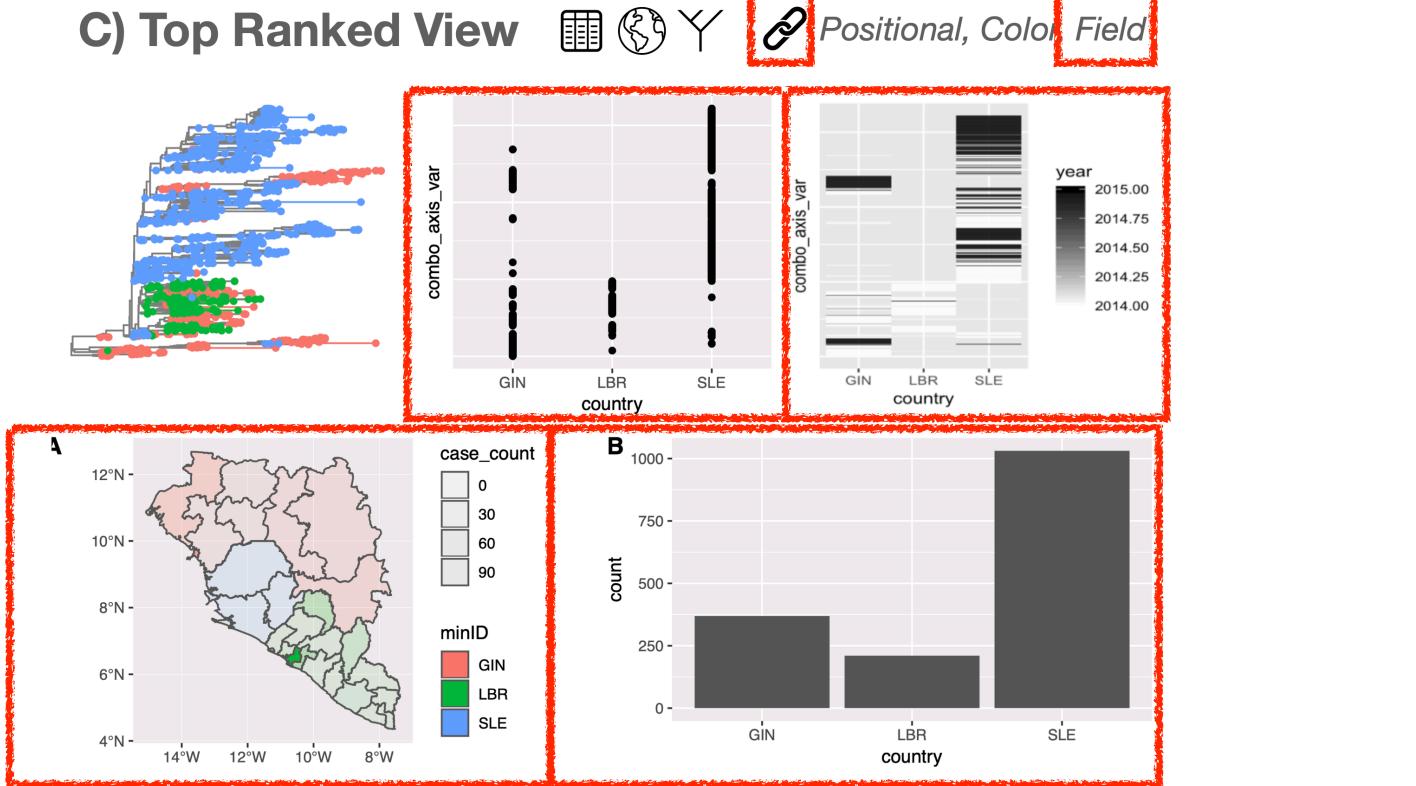




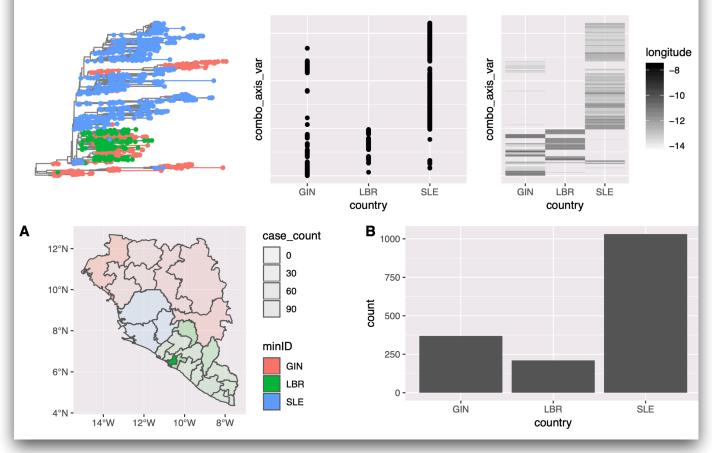


.E		

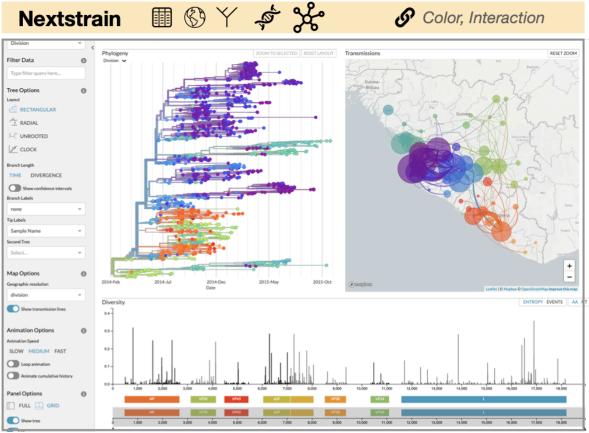


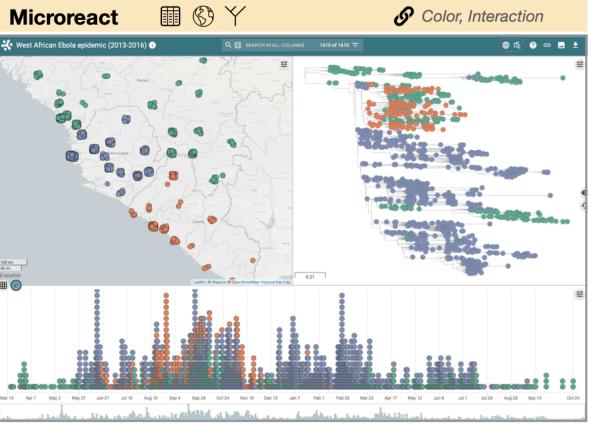


Top Ranked View III (Y Positional, Color, Field

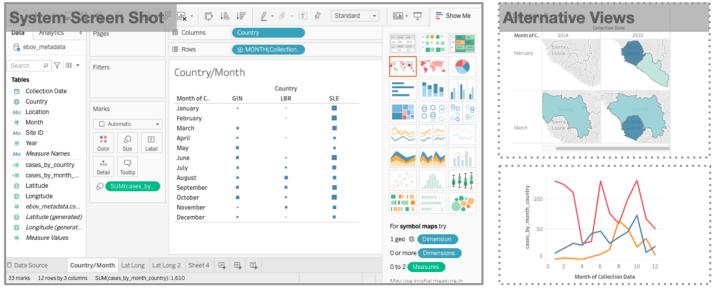


- Comparing to existing *bespoke* tools:
 - Slow:
 - Require extensive manual curation
 - Are less adaptive to changing data
 - Aligned: Have better alignment between chart types
 - Heterogeneity support: handle multiple types of data

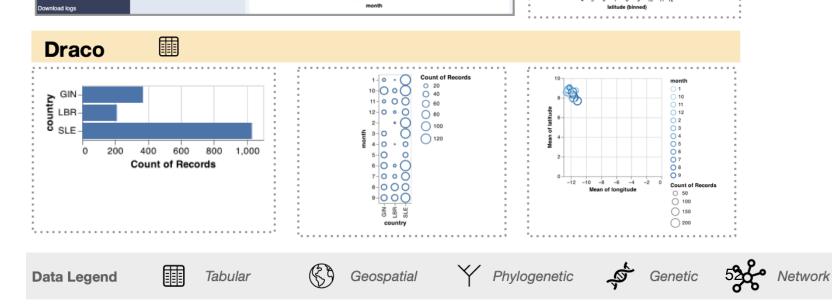


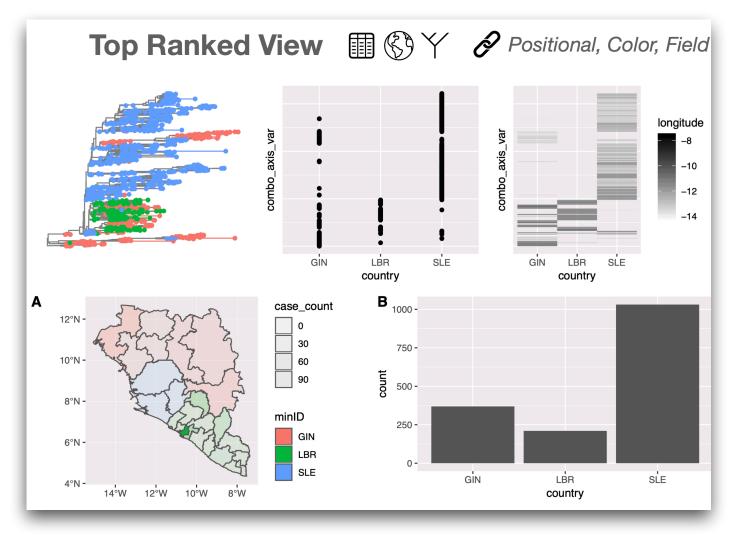


(\$) Geospatial چ Genetic 5 کی Network



Voyager Clear Specified View Encoding # latitude # longitude A month x - A country 当接回路 v · A month A loca • A month • A year Site_ID shape collection_date τ+ detail - # latitude # COUNT Collapse (**Related Views** icard Field # BIN (latitude) # BIN (longitude) Alternative Encoding Vildcard Shelves A Categorical Fields 等 拉 同 單 吃 A country A mon 🛗 Temporal Fields Country GIN LBR SLE 0000. 00. 00 OO





8 8 8

의 문 비 티 탄

150 200

250

6 7 8 9 10 11 1

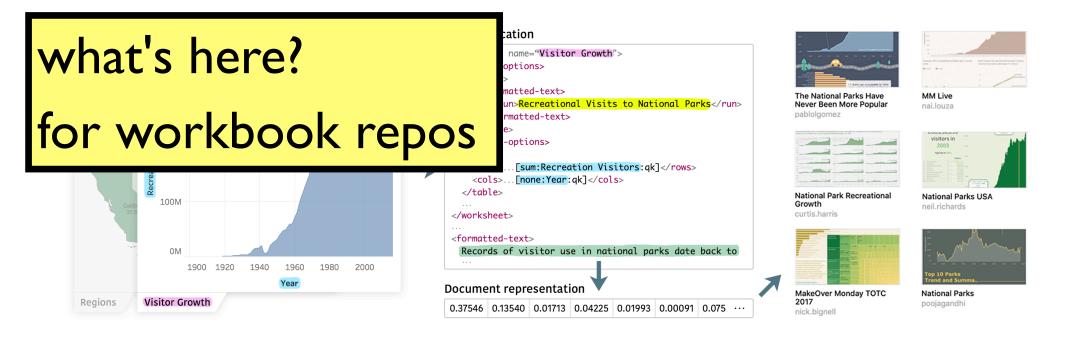
- Fast: easy to use
- Unaligned

• Comparing to existing *recommendation* tools:

• Suggest one chart at a time • Require manual curation for alignment Heterogeneity support limited

GEViTRec lowers burden to quickly visualize data

- Speeds up the process of data reconnaissance where are we?
- Automatically shows us what's here?
 - Identifies connections among datasets
 - Exploits domain prevalence design space
 - Constructs visually coherent chart combinations through gradual binding



VizCommender:

Computing Text-Based Similarity in Visualization Repositories for Content-Based **Recommendations**

https://www.cs.ubc.ca/group/infovis/pubs/2020/vizcommender/

VizCommender: Computing Text-Based Similarity in Visualization Repositories for Content-Based Recommendations Oppermann, Kincaid Munzner. IEEE TVCG 27(2): 495-505, 2021 (Proc.VIS 2020).

Michael Oppermann **UBC** Virtual Identity

Robert Kincaid Tableau

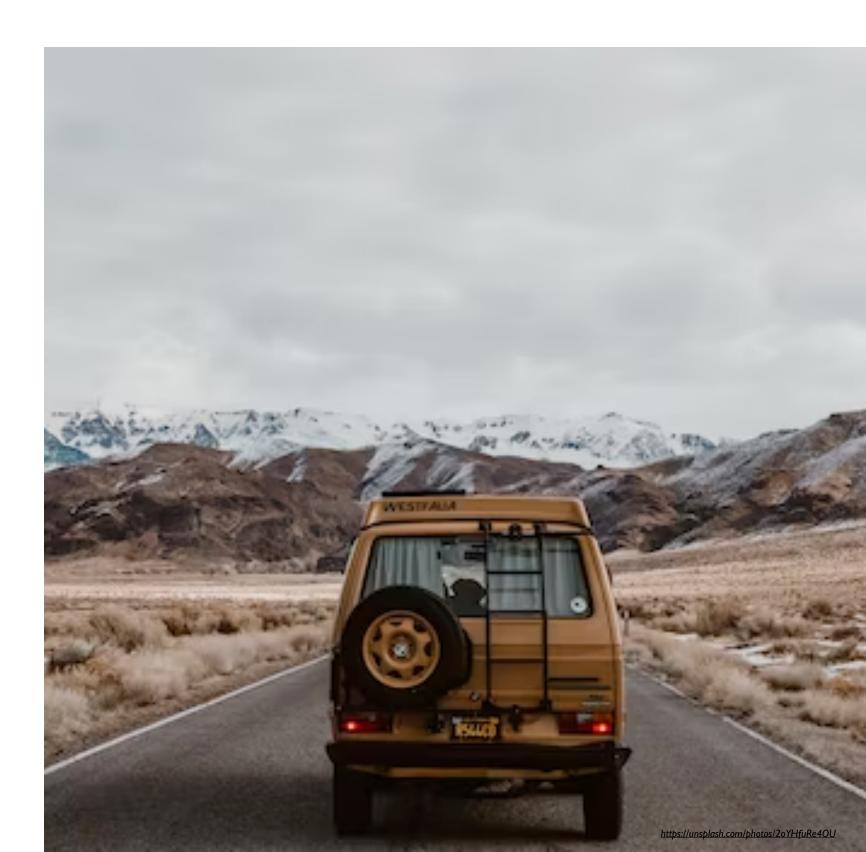
Tamara Munzner

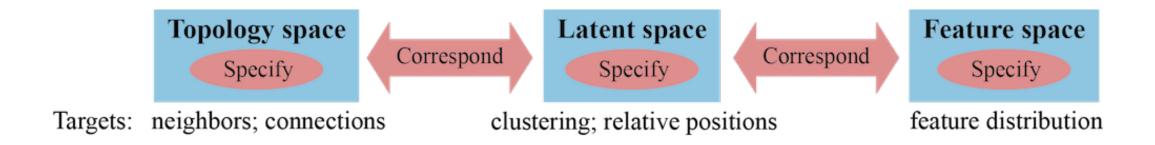
UBC

Questions in road trips - and visualization in data science!

- where are we?
 - Data Reconnaissance & Task Wrangling
- what's here?
 - Automatic Encodings through Recommendation
 to shed light on data landscapes
- are we there yet? are we lost?
 - -Visual Assessment of ML Training Completion & Quality

http://www.cs.ubc.ca/~tmm/talks.html#vds23





Visualizing Graph Neural Networks with CorGIE:

Corresponding a Graph to Its Embedding

https://arxiv.org/abs/2106.12839

Visualizing Graph Neural Networks with CorGIE: Corresponding a Graph to Its Embedding. Liu, Wang, Bernard, Munzner. IEEE TVCG 28(6):2500-2516, 2022.

Zipeng Liu UBC/Beihang

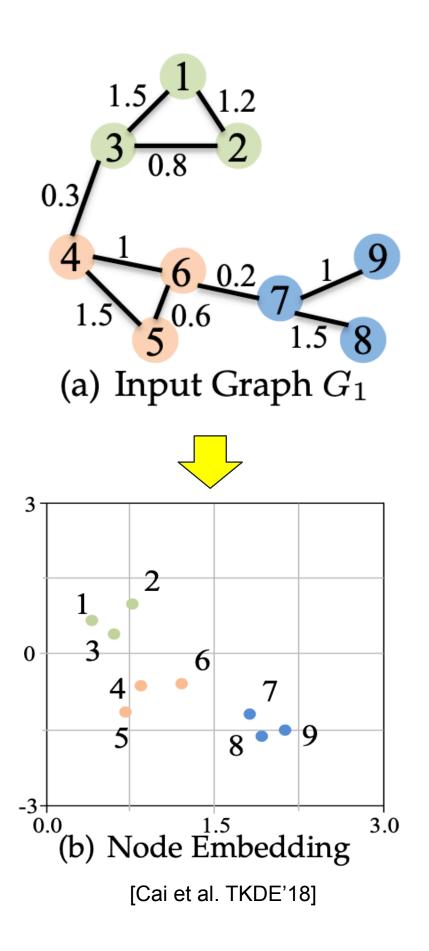
Yang Wang Uber/Facebook

Jürgen Bernard UBC/Zurich

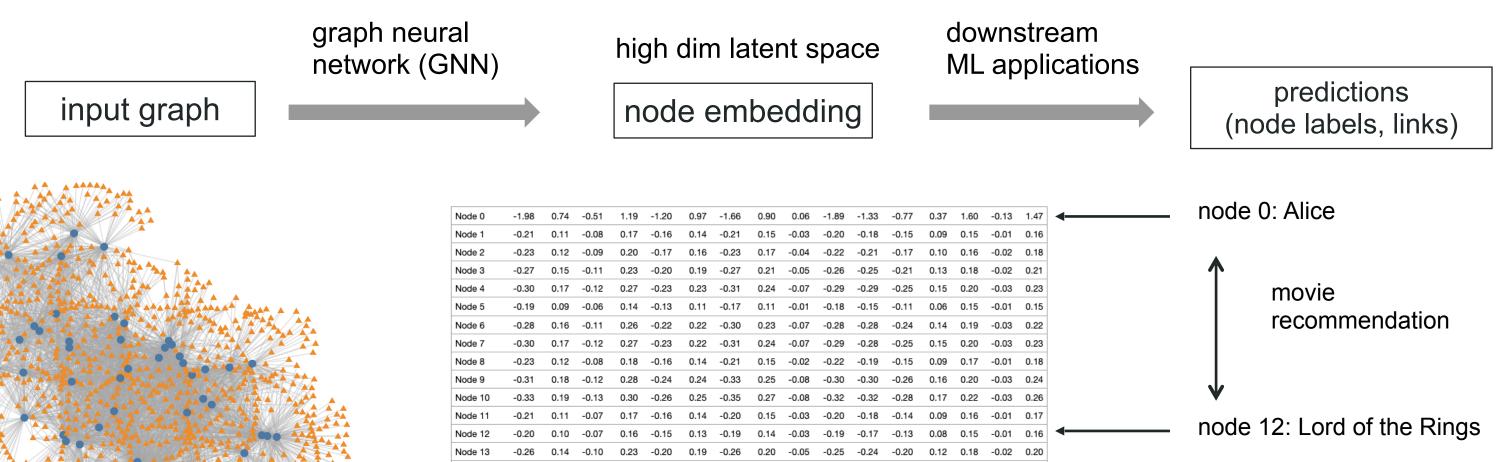
Tamara Munzner UBC

Graph neural network (GNN)

- machine learning (ML) models for graphs
 - -like CNN for images
 - -like Transformer for text
- many real-world graph-related applications
 - -node classification
 - examples: fraud detection, disease classification
 - -link prediction
 - examples: product recommendation, protein interactions

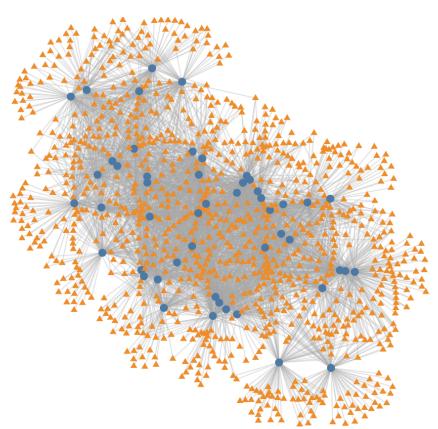


Graph neural network (GNN)



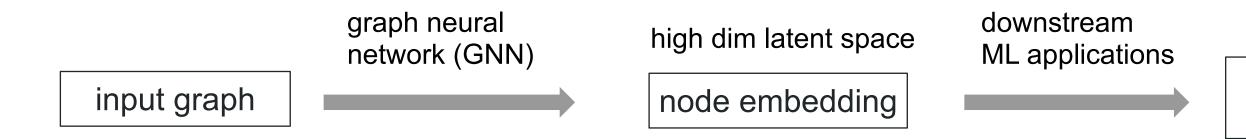
NOUC 0	1.50	0.74	0.01	1.15	1.20	0.07	1.00	0.00	0.00	1.00	1.00	0.77	0.07	1.00	0.10	1.47	
Node 1	-0.21	0.11	-0.08	0.17	-0.16	0.14	-0.21	0.15	-0.03	-0.20	-0.18	-0.15	0.09	0.15	-0.01	0.16	
Node 2	-0.23	0.12	-0.09	0.20	-0.17	0.16	-0.23	0.17	-0.04	-0.22	-0.21	-0.17	0.10	0.16	-0.02	0.18	
Node 3	-0.27	0.15	-0.11	0.23	-0.20	0.19	-0.27	0.21	-0.05	-0.26	-0.25	-0.21	0.13	0.18	-0.02	0.21	
Node 4	-0.30	0.17	-0.12	0.27	-0.23	0.23	-0.31	0.24	-0.07	-0.29	-0.29	-0.25	0.15	0.20	-0.03	0.23	
Node 5	-0.19	0.09	-0.06	0.14	-0.13	0.11	-0.17	0.11	-0.01	-0.18	-0.15	-0.11	0.06	0.15	-0.01	0.15	
Node 6	-0.28	0.16	-0.11	0.26	-0.22	0.22	-0.30	0.23	-0.07	-0.28	-0.28	-0.24	0.14	0.19	-0.03	0.22	
Node 7	-0.30	0.17	-0.12	0.27	-0.23	0.22	-0.31	0.24	-0.07	-0.29	-0.28	-0.25	0.15	0.20	-0.03	0.23	
Node 8	-0.23	0.12	-0.08	0.18	-0.16	0.14	-0.21	0.15	-0.02	-0.22	-0.19	-0.15	0.09	0.17	-0.01	0.18	
Node 9	-0.31	0.18	-0.12	0.28	-0.24	0.24	-0.33	0.25	-0.08	-0.30	-0.30	-0.26	0.16	0.20	-0.03	0.24	
Node 10	-0.33	0.19	-0.13	0.30	-0.26	0.25	-0.35	0.27	-0.08	-0.32	-0.32	-0.28	0.17	0.22	-0.03	0.26	
Node 11	-0.21	0.11	-0.07	0.17	-0.16	0.14	-0.20	0.15	-0.03	-0.20	-0.18	-0.14	0.09	0.16	-0.01	0.17	
Node 12	-0.20	0.10	-0.07	0.16	-0.15	0.13	-0.19	0.14	-0.03	-0.19	-0.17	-0.13	0.08	0.15	-0.01	0.16	
Node 13	-0.26	0.14	-0.10	0.23	-0.20	0.19	-0.26	0.20	-0.05	-0.25	-0.24	-0.20	0.12	0.18	-0.02	0.20	
Node 14	-0.19	0.08	-0.06	0.13	-0.13	0.11	-0.17	0.11	-0.01	-0.18	-0.15	-0.10	0.06	0.14	-0.01	0.15	
Node 15	-0.16	0.06	-0.04	0.09	-0.10	0.07	-0.13	0.07	0.01	-0.14	-0.11	-0.06	0.03	0.13	-0.00	0.12	

a vector for each node

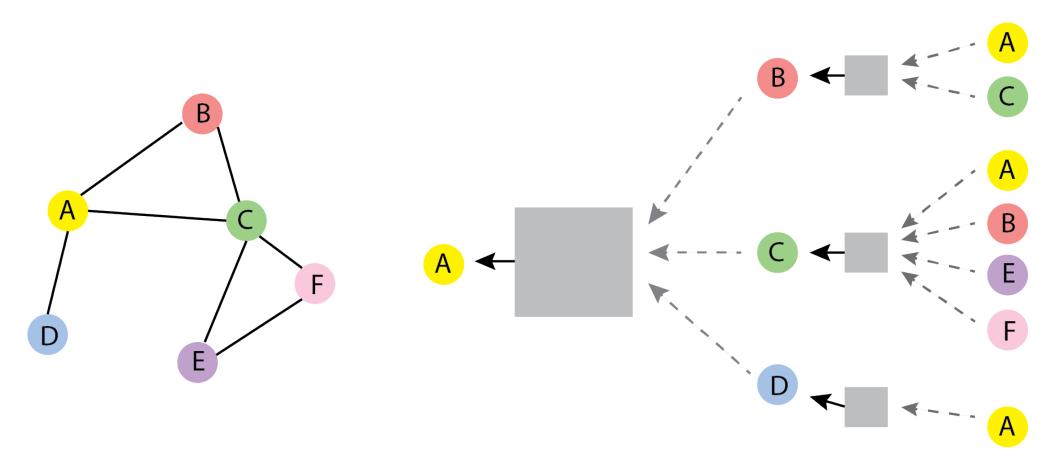


movie – user graph

Graph neural network (GNN)



node features are aggregated / passed through topological neighborhood



Remake from https://snap-stanford.github.io/cs224w-notes/machine-learning-with-networks/graph-neural-networks

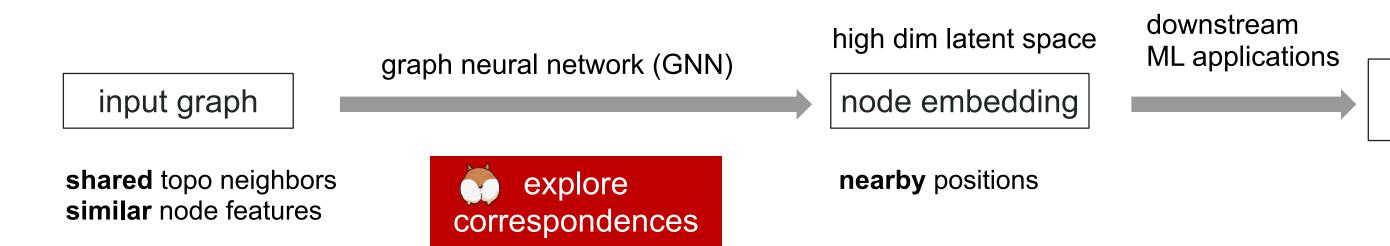
predictions (node labels, links)

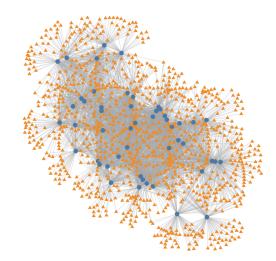
Evaluating GNN quality

Two big-picture questions

- Are we there yet? Should we train / tune more?
- Are we lost? Does it behave as we expect?

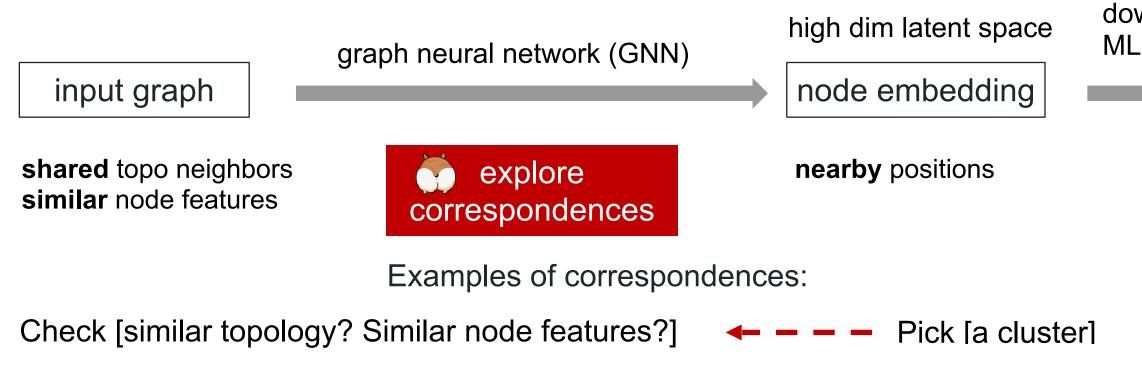
60

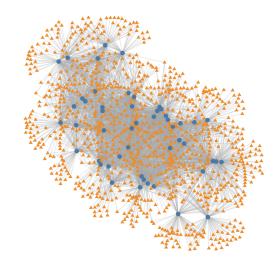


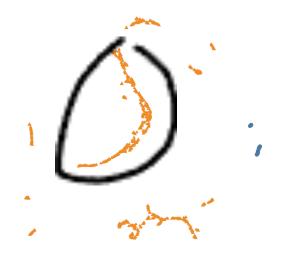


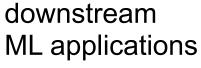
predictions (node labels, links)

where are we? what's here?



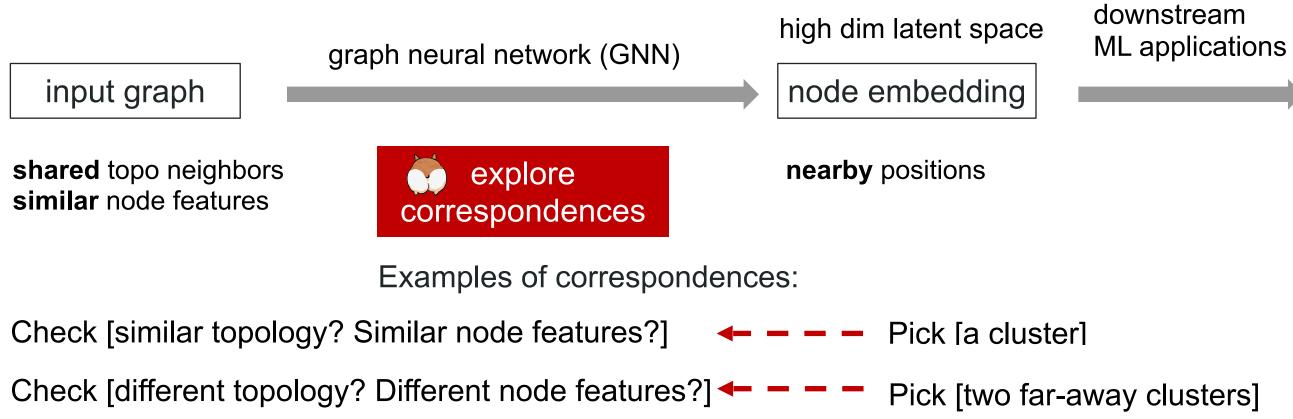


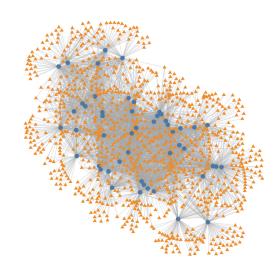


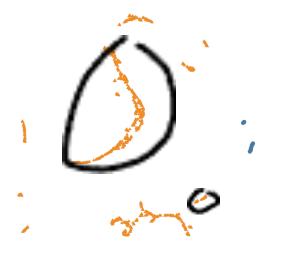


predictions (node labels, links)

where are we? what's here?

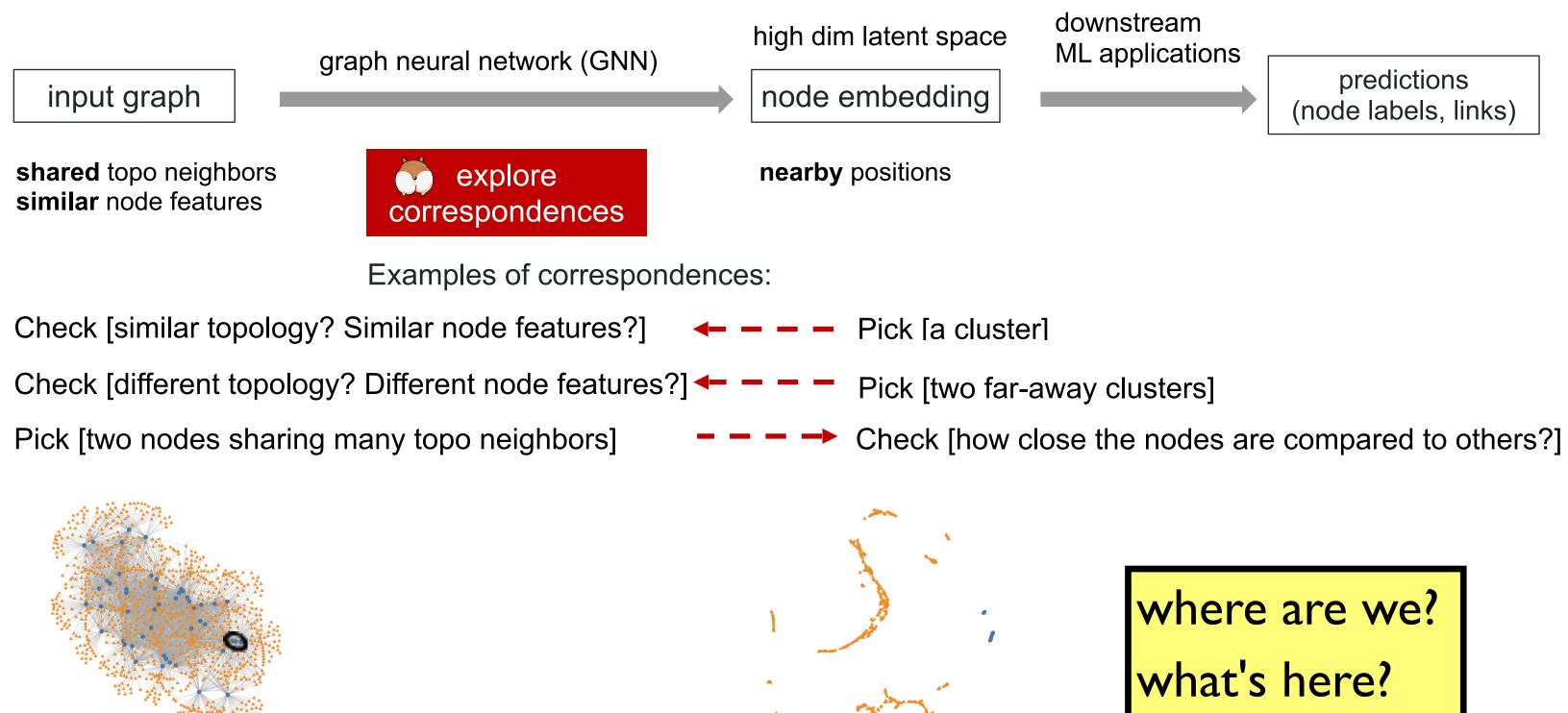






predictions (node labels, links)

where are we? what's here?



Data and tasks

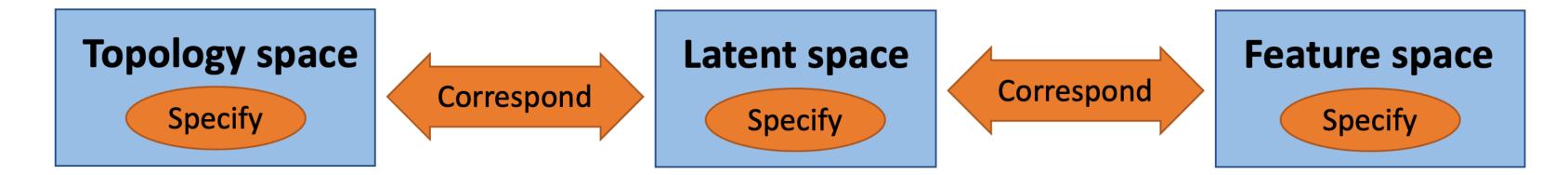
Topology space

Latent space

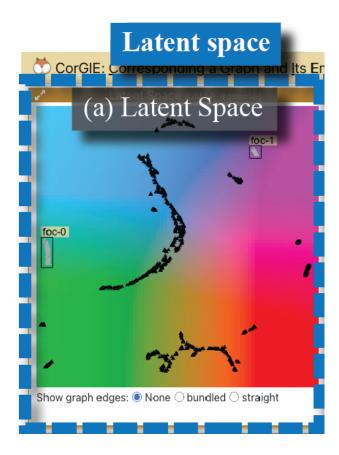
• three data spaces

Feature space

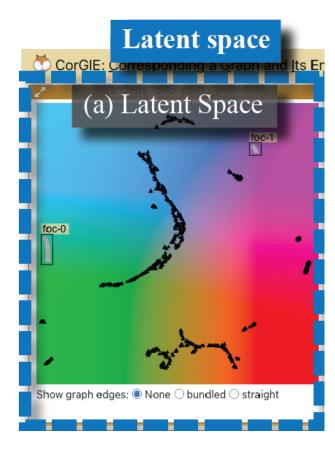
Data and tasks

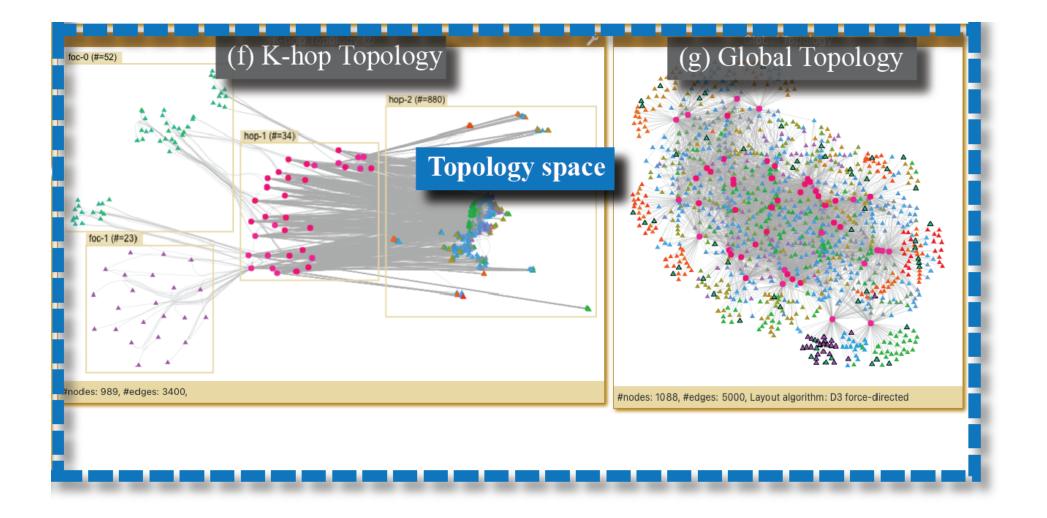


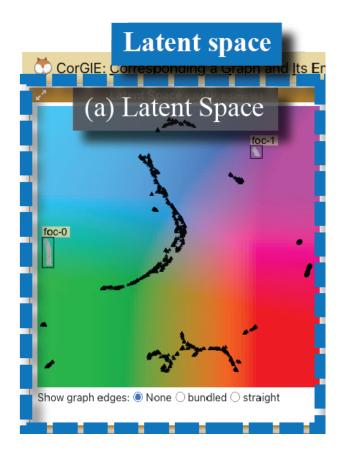
- three data spaces
- tasks
 - specify
 - -correspond

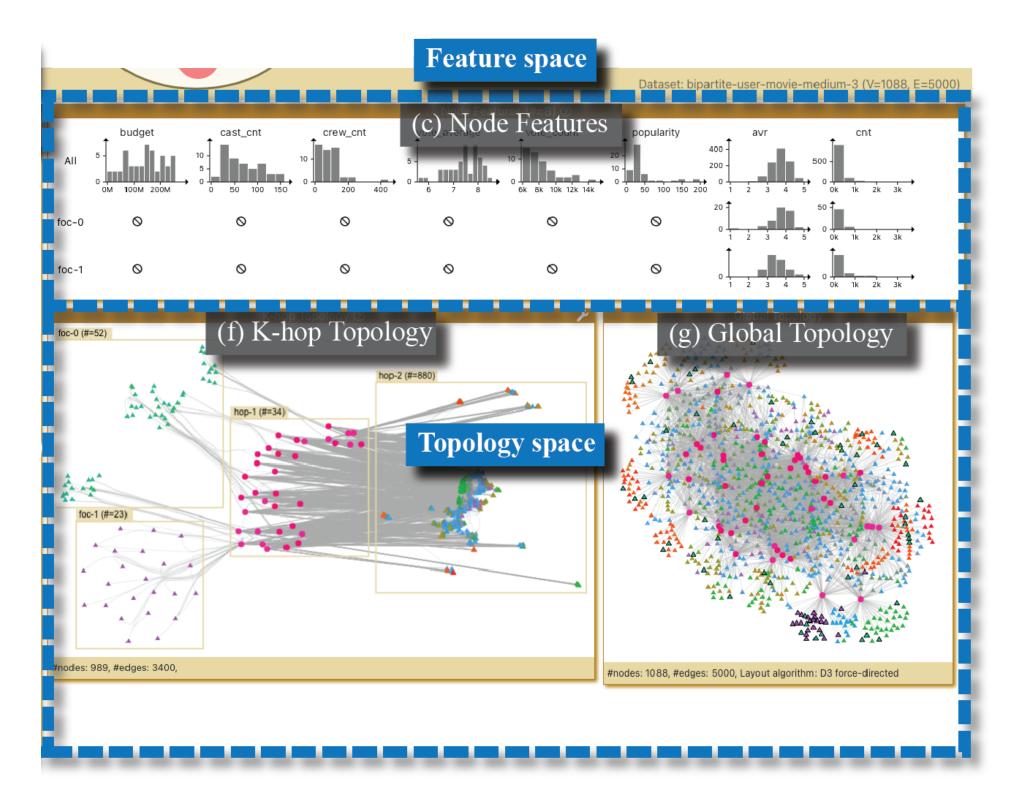


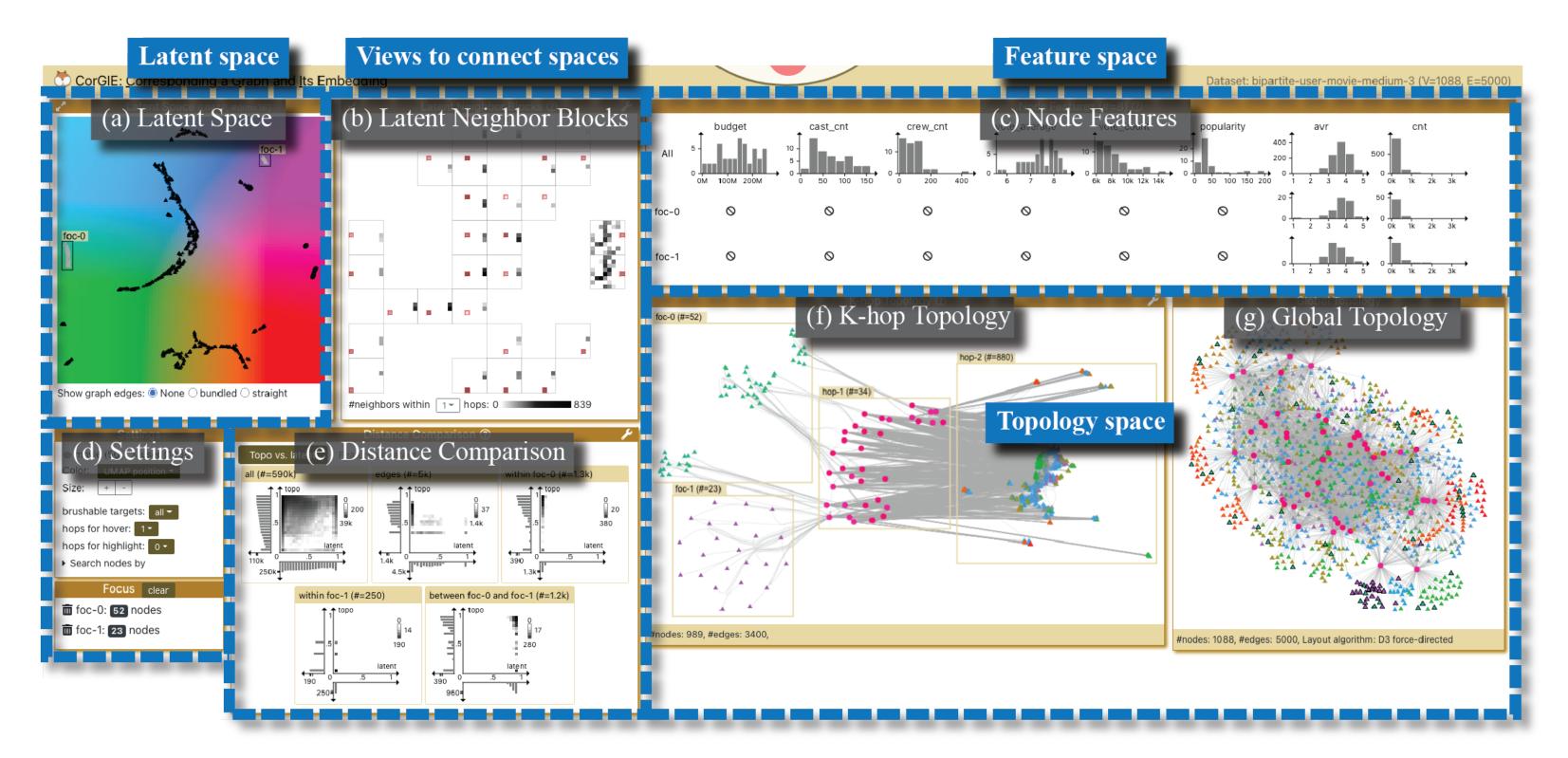
67











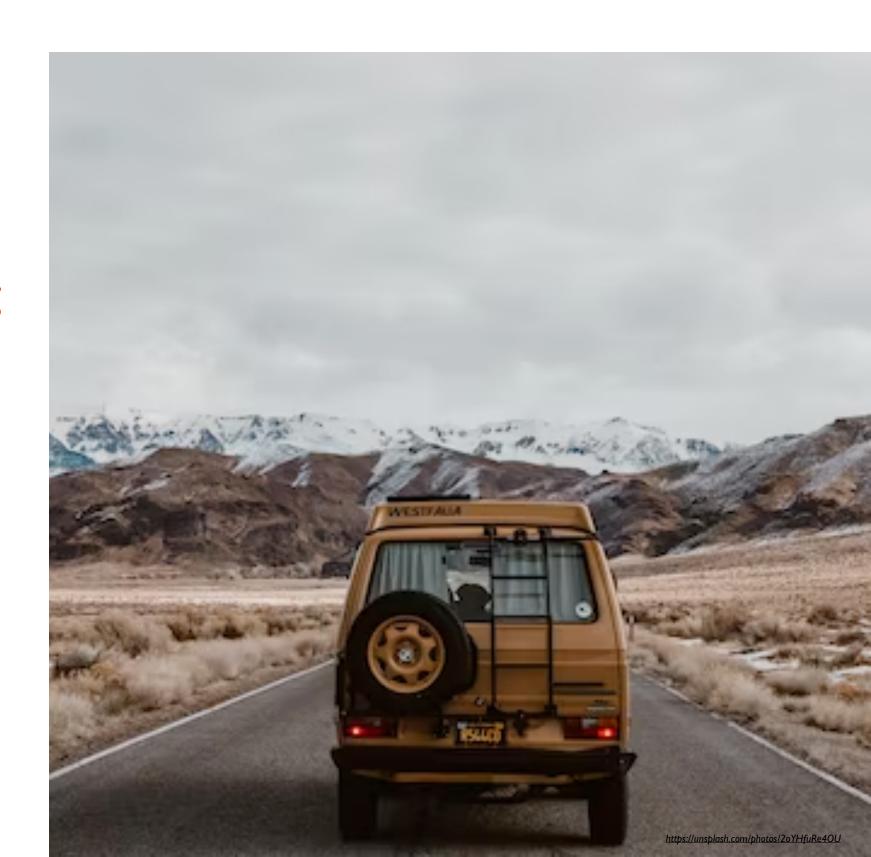
CorGIE: Visual Assessment of ML Training Completion & Quality

- Addresses where are we?
 - Visually explore correspondences between input graph and node embedding to show what's here?
- Addresses are we there yet?
 - Has the GNN training process captured all expected data about k-hop neighborhoods in the input graph, or should we keep going with train/tune?
- Addresses are we lost?
 - Are the GNN predictions high quality or low quality?

Questions in road trips - and visualization in data science!

- one VDS project for each question
- where are we?
 - Data Reconnaissance & Task Wrangling
- what's here?
 - -Automatic Encodings through Recommendation
- are we there yet? are we lost?
 - -Visual Assessment of ML Training Completion

http://www.cs.ubc.ca/~tmm/talks.html#vds23



More information

• this talk

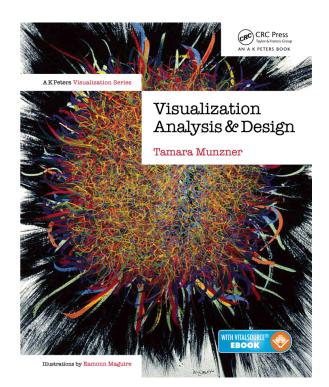
http://www.cs.ubc.ca/~tmm/talks.html#vds23

- full courses, papers, videos, software, talks <u>http://www.cs.ubc.ca/group/infovis</u> <u>http://www.cs.ubc.ca/~tmm</u>
- book

http://www.cs.ubc.ca/~tmm/vadbook

 VIS23 book table from CRC/Routledge -physical table

-virtual bookshop: https://bit.ly/IEEEVIS23



Visualization Analysis and Design. Munzner. CRC Press, AK Peters Visualization Series, 2014.

<u>@tamara@vis.social</u>

