Visualization Analysis \& Design All Book/Teaching Slides Tamara Munzner Department of Computer Science University of British Columbia All Book/Teaching Slides Last change: 4 Oct 202 I www.cs.ubc.ca/~tmm/talks.html\#vadallslides	Contents - Ch I.What's Vis, and Why Do It? - Ch 4.Analysis: Four Levels for Validation - Ch 2.What: Data Abstraction - Ch 3.Why:Task Abstraction - Ch 5. Marks and Channels - Ch 6. Rules of Thumb - Ch 7.Arrange Tables - Ch 8.Arrange Spatial Data - Ch 9.Arrange Networks and Trees - Ch IO. Map Color and Other Channels - Ch II. Manipulate View - Ch I2. Facet into Multiple Views - Ch I3. Reduce Items and Attributes - Ch I4. Embed: Focus+Context - Ch I5.Analysis Case Studies - Wrapup - Big Picture \& Other Synthesis - Further Reading - Design Study Methodology - Next Steps - In Class Exercise
Defining visualization (vis) Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively. Why?...	Why have a human in the loop? Computer-based xisualization systems provide visual representations 0 datasets designed to hel people arry out tasks more effectively.
Why use an external representation? Computer-based visualization systems provid visual representations fatasets designed to help people carry out tasks more errectively. - external representation: replace cognition with perception ICerebral: Visualizing Multiple Experimental Conditions on a Graph with Biological Context. Barsky, Munzner, Gardy, and Kincaid. IEEE	Why use an external representation? Computer-based visualization systems provid visual representations fatasets designed to help people carry out tasks more errectivery. - external representation: replace cognition with perception with Biological Context. Barsky, Munzner, Gardy, and Kincaid. IEEE
Why represent all the data? Computer-based visualization systems provide visua representations of datasets designed to help people carry out tasks more effectivery. - summaries lose information, details matter - confirm expected and find unexpected patterns Anscombe's Quartet - assess validity of statistical model	What resource limitations are we faced with? Vis designers must take into account three very different kinds of resource limitations: those of computers, of humans, and of displays. - computational limits - computation time, system memory - display limits - pixels are precious \& most constrained resource -information density: ratio of space used to encode info vs unused whitespace - tradeoff between clutter and wasting space - find sweet spot between dense and sparse - human limits -human time, human memory, human attention

Defining visualization (vis)

Visualization Analysis \& Design
Computer-based visualization systems provide visual representations of datasets
designed to help people cary What's Vis, and Why Do It? (Ch 1)

Tamara Munzner

Department of Computer Science
University of British Columbia
@tamaramunzner
Why have a human in the loop?

Computer-basedvisulization systems provide visual representations of datasets designed to hel people

Visualization is suitable when there is a need to augment human capabiilities
rather than replace people with computational decision-making methods.

Why depend on vision?

Computer-based visualization systems provid visual ep ep designed to help people carry yout tasks more entecivery.

human visual system is high-bandwidth channel to brain - overview possible due to background processing subiective experience of seeing everyching simultaneously
significant processing occurs in anarale and preatentivily
sound: lower bandwidth and different semantics
-overview not supported

- subjective experience of sequential stream
touch/haptics: impoverished record/replay capacity
- only very low-bandwidth communication thus far
taste, smell: no viable record/replay devices
Why analyze?
- imposes structure on
- imposes structure on
-scaffold to help you think
systematically about choices
analyzing existing as stepping ston
- analyzing existing as
-most possibilities ineffective for
particular taskkddata combination

Why have a human in the loop?
Computer-based viesplization systems provide visual representations datasets:
designed to hel peopple
arry out tasks more effectively.
Visualization is suitable when there is a need to augment human capabilitie
rather than replace people with computational decision-making methods.

- don't need vis when fully automatic solution exists and is trusted - many analysis problems ill-specified
- don't know exactly what questions to ask in advance
- possibilities
-long-term use for end users (ex: exploratory analysis of scientific dati) presentation of known results (ex: New York Times Upshot)
stepping stone to assess requirements before developing models
help automatic solution developers refine \& determine parameters
help automatic solution developers refine \& determine
Why represent all the data?
Computer-based visualization ssstems provide visu trepresentations of datasets
designed to help people cary out tasks more effectivery.
- summaries lose information, details matter
-confirm expected and find unexpected patterns
-assess validity of statistical model

Why analyze?

- imposes structure on
huge design space
-scaffold to help you think
systematically about choices
analyzing existing as stepping stone
-analyzing existing a
-most possibilities ineffective for

most possibilitites ineffective for
particular taskddata combination

man time, human memory, human attention

Visualization Analysis \& Design

Analysis framework: Four levels, three questions
domain situation

- who are the target users?

Analysis framework: Four levels, three questions

- domain situction
- who are the target users?
- abstraction
-translate from specifics of domain to vocabulary of vis
- what is shown? data abstraction
-why is the user looking at it? task abstraction
 algorithm

Why is validation difficult?

Tamara Munzner
 Department of Computer Science University of British Columbia

University of Brita
@tamaramunnzer
Analysis framework: Four levels, three questions

- domain situation
- who are the target users!
- abstraction
-translate from specifics of domain to vocabulary of vis
- what is shown? data abstraction
- why is the user looking at tit task abstraction
- idiom

- idiom

Analysis: Nested Model (Ch 4)

-how is it shown?
-visual encoding diom: how to draw

- Visual encoding idiom: how to draw
- interaction idiom: how to manipulate

- solution: use methods from different fields at each level

Nested model - downstream: cascading effects

Why is validation difficult?

- solution: use methods from different fields at each level

Nested model

downstream: cascading effects - upstream: iterative refinement

Why is validation difficult?

- solution: use methods from different fields at each level

SpaceTre huge design space
-scaffold to help you think
systematically about choic
-analyzing existing as stepping stone most possibilities ineffective for
particular taskldata combination Why?
How?

Analysis framework: Four levels, three questions domain situation
target users?
ranslate from specifics of domain to vocabulary of vis -what is shown? data abstraction

- why is the user looking at it? task abstraction

visual encoding idiom: how to draw
interaction idiom: how to manipulate

hy is validation difficult?

- different ways to get it wrong at each level
$2 \begin{aligned} & \text { Domain situation } \\ & \text { rou misundestood the }\end{aligned}$
$2 \begin{aligned} & \text { Domain situation } \\ & \text { rou misundestood the }\end{aligned}$
 - Datatask abstraction
Youre showing them the
 - Datatask abstraction
Youre showing them the
 - Visual encoding initeraction itiom
 - Visual encoding initeraction itiom
廌 Algorithm
廌 Algorithm

Why is validation difficult?

- solution: use methods from different fields at each level

solution: use methods from different fields at each level
anthropologyl
- solution: use methods from difterent fields at each level

Avoid mismatches

Avoid mismatches

Visualization Analysis \& Design
Analysis: Nested Model (Ch 4) II

Tamara Munzner

Tamara Munzner
Department of Computer Science
University of British Columbia
@tamaramunzner University of British Columbia
Analysis examples: Single paper includes only subset of methods

Visualization Analysis \& Design
Data Abstraction (Ch 2): In Brief

Tamara Munzner
Department of Computer Science
University of British Columia University of British Columbia

Three major datatypes

Analysis examples: Single paper includes only subset of methods
$\frac{2}{2}$
Analysis examples: Single paper includes only subset of methods

Analysis examples: Single paper includes only subset of methods

qualitivere esutit mage enalys

Tamara Munzner

What does data mean?
$14,2,6,30,30,15,100001$

- What does this sequence of six numbers mean?
- What does this sequence of six numbers men
-wo points close to each other in 2 D space, with 15 links between hem, and a weight of 100001 for the link? something else?

What does data mean?

14, 2.6, 30, 30, 15, 100001

- What does this sequence of six numbers mean?
-two points far from each other in 3 D space?
- womentins clesem to each o other in 2 D space, with 15 links beeween them, and a weigh of 100001 for the link

Basil, 7, S, Pear

- What about this data?
- food stipment of produce (basil \& pear) arrived in stitisfactory condition on 7 th day of month

Basil Point neighoorhood of ofiry had 7 incheses of snow cleared by yhe Pear Creek Limited snow removal service

What does data mean?

What does this sequence of six numbers mean?

What does data mean?
$14,2.6,30,30,15,100001$
What does this sequence of six numbers mean? no pints fir from each other in 3 D spacel

號

What does data mean?
4, 2.6, 30, 30, 15, 10000
What does this sequence of six numbers mean?
-two points close to each ocher in 2 D space, with 15 links berween them, and a weight of 100001 for the linke
-something esse?!
Basil, $, \mathrm{S}, \mathrm{S}$, Pear

What does data mean?
14, 2.6, 30, 30, 15, 100001
What does this sequence of six numbers mean?
-two pointst far from each other in 3 D space?
-wo points close to each other in 2 D space, with 15 links between them, and a weight of 100001 for the link

- somenting elsel Basi1 7 S , Pear

What about this data?

- food shipment of produce (basil \& pear) arrived in satisfactory condition on 7 Th day of month
- Basil Point neieghoortood of city had 7 inches of snow cleared by the Pear Creek Limited snow removal service
as reward food

What does data mean

$14,2.6,30,30,15,10000$
-What does this sequence of six numbers mean?
two points far from each other in 3 D space)
Wo poins close to each other in 2 D space, \mathbf{w}

- somenting else?!

Basil, 7, S, Pear

- What about this data

Now what?

- semantics: real-world meaning

Items \& Attributes

- item: individual entity, discrete

 -eg patient, car, stock, city| Name | Age | Shirt Size | Favorite Fruil |
| :---: | :---: | :---: | :---: |
| ${ }_{\text {amy }}$ | ${ }_{8}^{8}$ | s | Apple |
| | 7 | s | Pear |
| Clara | 9 | m | Duria |
| mond | 13 | I | Ezderberry |
| Ernest | 12 | I | |
| Fanny | 10 | s | Lychee |
| orge | 9 | m | Orange |
| ctos | 8 | \pm | Loguat |
| ${ }_{\text {Any }}^{\text {Ida }}$ | 12 | ${ }^{*}$ | ${ }^{\text {Pear }}$ |

Items \& Attributes

- item: individual entity, discrete
- eg patient, car, stock, city

item: person

Items \& Attributes
• item: individual entity, -eg patient, car, stock, city
-"independent variable" - attribute: property that is measured, observed, logged... - eg height, blood pressure for patie - eg horsepower, make for car -"dependent variable"

Items \& Attributes , item. Individual entity, discrete -eg patient, car, stock, city -"independent variable" attribute: property that is measured, observed, logged... - eg height, blood pressure for patient
-eg horsepower, make for car - eg horsepower, make fo
-"dependent variable"
attributes: name, age, shirt size, fave fruit

Other data types
links
-eg friendship on facebook, interaction between proteins
positions

- spatial data: location in 2D or 3D
-pixels in photo, voxels in MRI scan, latitude/longitude
grids
- -pixels
\cdot grids
-samplit
-sampling strategy for continuous data

Dataset types
attributes: name, age, shirt size, fave fruit

Dataset types			attributes: name, age, shirt size, fave fruit			
Tables	$\begin{aligned} & \text { - flatat table } \\ & - \text { one item per row } \end{aligned}$					
	-each column is atrribute ID		Name	Age	Shirt Size	Favorite Fruit
${ }_{\text {Items }}{ }_{\text {Atrribute }}$	-cell holds value for item-attribute pair		${ }^{\text {amy }}$		s	Apple
			Basil		s	Pear
	-unique key (could be implicit)		${ }_{\text {Clara }}^{\text {Cesmond }}$	${ }^{2}$	$\stackrel{M}{\text { L }}$	${ }_{\text {Dor }}^{\text {Durian }}$ Elderberry
				12		
\rightarrow Tables		6	Fanny	10	$\stackrel{s}{s}$	Lychee Orange
	sstoumm	8	Hector	8	\pm	Loquat
Hens	\square		${ }_{\text {Any }}$	12	\%	
E	\cdots			12	M	orange

\rightarrow Tables

Spatial fields

- attribute values associated $w /$ cells
- cell contains value from
continuous domain
-eg temperature, pressure, wind velocity
measured or simulated
major concerns
- sampling:
interpolation:
how to model
grid types

Spatial fields			
- attribute values associated $\mathrm{w} /$ cells ${ }^{\text {cealar }}$			
- cell contains value from continuous domain			
- eg temperature, pressure, wind velocity - measured or simulated			
- major concerns			
-sampling: where attributes are measured vector			
- interpolation: how to model attributes elsewhere			
-grid types			
- major divisions			
- attributes per cell: scalar (I), vector (2), tensor (many)			

Dataset types

Data vs conceptual model, example - data model: floats $-32.52,54.06,-14.35, \ldots$ - conceptual model -temperature - multiple possible data abstractions	Data vs conceptual model, example - data model: floats $-32.52,54.06,-14.35, \ldots$ - conceptual model -temperature - multiple possible data abstractions - continuous to 2 significant figures: quantitative - task: forecasting the weather	Data vs conceptual model, example - data model: floats $-32.52,54.06,-14.35, \ldots$ - conceptual model -temperature - multiple possible data abstractions - continuous to 2 significant figures: quantitative - task: forecasting the weather - hot, warm, cold: ordinal - task: deciding if bath water is ready	Data vs conceptual model, example - data model: floats $-32.52,54.06,-14.35, . . .$ - conceptual model -temperature - multiple possible data abstractions - continuous to 2 significant figures: quantitative - taskk forecasting the weather -hot, warm, cold: ordinal - task: deciding if bath water is ready -above freezing, below freezing: categorical - task: decide ifI should leave the house today
Derived attributes - derived attribute: compute from originals - simple change of type - acquire additional data - complex transformation	Analysis example: Derive one attribute		Visualization Analysis \& Design Task Abstraction (Ch 3): In Brief Tamara Munzner Department of Computer Science University of British Columbia @tamaramunzner
Derive - don't necessarily just draw what you're given! -decide what the right thing to show is -create it with a series of transformations from the original dataset -draw that - one of the four major strategies for handling complexity Original Data Derived Data	Analysis example: Derive one attribute	Why:Targets Θ All Data Network Data	Visualization Analysis \& Design Task Abstraction (Ch 3) Tamara Munzner Department of Computer Science University of British Columbia @tamaramunzner

Actions: Search - what does user know? Θ Search - target, location - lookup - ex: word in dictionary - alphabetical order - locate - ex: keys in your house - ex: node in network - browse - ex: books in bookstore - explore - ex: find cool neighborhood in new city	Actions: Query - how much of the data matters? \rightarrow Query - one: identify \rightarrow Identify \rightarrow Compare \rightarrow Summarize -some: compare - all: summarize \qquad $\underbrace{1}_{+\uparrow}$ 	Actions - independent choices for each of these three levels - analyze, search, query - mix and match	Task abstraction:Targets
Task abstraction:Targets All Data	Task abstraction:Targets All Data	Task abstraction:Targets	Task abstraction:Targets
Abstraction - these \{action, target\} pairs are good starting point for vocabulary -but sometimes you'll need more precision! - rule of thumb -systematically remove all domain jargon - interplay: task and data abstraction -need to use data abstraction within task abstraction - to specify your targets! - but task abstraction can lead you to transform the data -iterate back and forth - first pass data, first pass task, second pass data, ...	Means and ends		Visualization Analysis \& Design Marks \& Channels (Ch 5) I Tamara Munzner Department of Computer Science University of British Columbia @tamaramunzner
Visual encoding - how to systematically analyze idiom structure?	Visual encoding - how to systematically analyze idiom structure?	Visual encoding - how to systematically analyze idiom structure? - marks \& channels -marks: represent items or links -channels: change appearance of marks based on attributes	Marks for items - basic geometric elements \rightarrow Points Θ Lines Θ Interlocking Areas - •••• \square OD ID 2D - 3D mark: volume, rarely used

expressiveness

match channel type to data type

effectiveness

some channels are better than others

Channel effectiveness
curacy: how precisely can we tell the difference between encoded items? discriminability: how many unique steps can we perceive

- separability: is our ability to use this channel affected by another one? - popout: can things jump out using this channel?
- length is accurate: linear Steven's Psychoohysical Power Law. $s=$

Channels: Rankings

$$
\begin{aligned}
& \text { Postitio on onommon sale } \\
& \text { Postition on unaliged sale } \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& \text { Posfifionon unilign } \\
& \text { Lenght (1) size) }
\end{aligned}
$$

$$
\stackrel{\square}{\square}
$$

Accuracy: Fundamental theory others magnified or compressed
 angle Area (20 Size) Depht (30 oostion) Color IUMinanace Color Iuminance
Color saturation Curature

[^0]

2 groups each

Channels: Rankings $\stackrel{-}{-}$

Popout - find the red dot -how long does it take?	Popout - find the red dot -how long does it take?	Popout - find the red dot -how long does it take?	Popout - find the red dot -how long does it take?							
Popout - find the red dot -how long does it take?	Popout - find the red dot -how long does it take?	Popout - find the red dot -how long does it take?	Popout - find the red dot -how long does it take? - parallel processing on many individual channels -speed independent of distractor count - speed depends on channel and amount of difference from distractors - serial search for (almost all) combinations - speed depends on number of distractors							
Popout	Popout - many channels -tilt, size, shape, proximity, shadow direction, ... - but not all! - parallel line pairs do not pop out from tilted pairs	Factors affecting accuracy - alignment - distractors - distance - common scale / alignment $\\|\\|\\| \text { vs }\\| \text { vs }\\|_{\text {vs }}^{\\|} \\|$	Relative vs. absolute judgements - perceptual system mostly operates with relative judgements, not absolute							
Relative vs. absolute judgements - perceptual system mostly operates with relative judgements, not absolute -that's why accuracy increases with common frame/scale and alignment	Relative vs. absolute judgements - perceptual system mostly operates with relative judgements, not absolute -that's why accuracy increases with common frame/scale and alignment -Weber's Law: ratio of increment to background is constant	Relative vs. absolute judgements - perceptual system mostly operates with relative judgements, not absolute - that's why accuracy increases with common frame/scale and alignment -Weber's Law: ratio of increment to background is constant - filled rectangles differ in length by I:9, difficult judgement - white rectangles differ in length by $\mathrm{I}: 2$, easy judgement	Relative luminance judgements - perception of luminance is contextual based on contrast with surroundings							

Relative luminance judgements

Relative color judgements

- color constancy across broad range of illumination conditions

Rules of Thumb

- Guidelines and considerations, not absolute rules
- when to use 3D? when to use 2D?
-when to use 3 D ? when to use 2D?
-when to use eyes instead of memory?
- when to use eyes instead of me
-when does immersion
-how long is too long?
-which comes first, form or function?

Relative color judgements

- color constancy across broad range of illumination conditions

Visualization Analysis \& Design

Rules of Thumb (Ch 6)

Tamara Munzner
Department of Computer Science
University of British Columbia
Department of Computer Science
University of British Columbia
@tamaramunzner
@tamaramunzner
Depth vs power of the plane

- high-ranked spatial position channels: planar spatial position - not depth!

Position on common scale Position on unaligned scale	$\stackrel{\square}{\square}$
Length (10 size)	---
Tittangle	1/2
Area (20 size)	- - ■
Depth (30 position)	$\stackrel{\square}{\bullet}$ •

Occlusion hides information
Depth vs power of the plane

- high-ranked spatial position channels: planar spatial position
-not depth!

3D vs 2D bar charts -3D bars:
3D bars:
very difficult to justify! -perspective distortion -perspective
-oclusion

- faceting into 2D almost always better choice

erspective distortion loses information
perspective distortion
-interferes with all size channel encodings
- 0 , 1
[Visulizing the Results of Aultimedia Web Search
Engines. Mukhereica, Hirata, ond Hara. Infovis 96$]$

- occlusion
- interaction can resolve, but at cost of time and cognitive load

[DDisortion Vieving Techniques for 3D Data. Carpendale et al. InfVVis 1996 .]

No unjustified 3D example:Time-series data

- extruded curves: detailed comparisons impossible

visual feedback: three rough categories
-0.1 seconds:perceptual processing
- subsecond response for mouseover highlighting - balistic motion

1 second: immediate response

- fast response after mouseclick, button press - Fitsts' Law limits on motor contro
- 10 seconds: brief tasks \qquad
\qquad scalability considerations
complete redraw of view (graphics frontbuffer)
low hourglass for multi-second operations (check for cancel/undo) -show progress bar for long operations (process in background thread) -rendering speed when item count is large (guaranteed frame rate)

Function first, form next
dangerous to start with aesthetics

- usually impossible to add function retroactively
start with focus on functionality
-possible to improve aesthetics later on, as refinement
-if no expertise in-house, find good graphic designer to work with
- aesthetics do matter! another level of function
- visual hierarchy, lignment flow
- Gestalt principles in action

Form: Basic graphic design ideas	What Goes Arouni lomes Aronind \qquad Rolin Willans Jamary 1,20

Function first, form next
usually impossible to add function retroa

Form: Basic graphic design ideas

$$
2
$$

Rules of Thumb Summary

- No unjustified 3D
-Power of the plane
-Occlusion hides information
-Perspective distortion dangers
- Tilted text isn't legible
- No unjustified 2D
- Eyes beat memory
- Overview first, zoom and filter, details on demad
- Responsiveness is required
- Function first, form next

Tamara Munzner

Department of Computer Scienc
University of British Columbia

Focus on Tables \rightarrow Dataset Types	Keys and values - key	Keys and values - key		Idiom: scatterplot Θ Express Values - express values (magnitudes)
	-independent attribute - used as unique index to look up items - simple tables: I key -multidimensional tables: multiple keys - value - dependent attribute, value of cell \square \rightarrow Multidimensional Table	-independent attribute -used as unique index to look up items -simple tables: I key -multidimensional tables: multiple keys - value - dependent attribute, value of cell - classify arrangements by keys used $-0, I, 2, \ldots$		
		Scatterplots: Encoding more channels - additional channels viable since using point marks - color - size (I quant attribute, used to control 2D area) - note radius would mislead, take square root since area grows quadratically -shape		Scatterplot tasks
Scatterplot tasks - correlation	Scatterplot tasks - correlation - clusters/groups, and clusters vs classes	Some keys		Some keys: Categorical regions
Regions: Separate, order, align - regions: contiguous bounded areas distinct from each other - separate into spatial regions: one mark per region (for now) - use categorical or ordered attribute to separate into regions - no conflict with expressiveness principle for categorical attributes - use ordered attribute to order and align regions $\rightarrow \underset{\text { List }}{1 \text { Key }}$ $\rightarrow \underset{\substack{\text { Matrix }}}{2 \text { Kess }}$	Separated and aligned and ordered - best case	Separated and aligned but not ordered - limitation: hard to know rank. what's 4th? what's 7th?		Separated but not aligned or ordered - limitation: hard to make comparisons with size (vs aligned position)

Idiom: bar chart - one key, one value -data - I categ attrib, I quant attrib -mark: lines -channels - length to express quant value - spatial regions: one per mark - separated horizontally, aligned vertically - ordered by quant attrib » by label (alphabetical), by length attrib (data-driven) - task - compare, lookup values - scalability - dozens to hundreds of levels for key attrib [bars], hundreds for values	Idiom: stacked bar chart - one more key -data - 2 categ attrib, I quant attrib -mark: vertical stack of line marks - glyph: composite object, internal structure from multiple marks - channels - length and color hue - spatial regions: one per glyph - task - part-to-whole relationship - scalability: asymmetric - for stacked key attrib, 10-12 levels [segments] - for main key attrib, dozens to hundreds of levels [bars]	Idiom: streamgraph - generalized stacked graph - emphasizing horizontal continuity - vs vertical items - I categ key attrib (movies) - I ordered key attrib (time) - I quant value attrib (counts) - derived data - geometry: layers, where height encodes counts - I quant attrib (layer ordering)	Idiom: streamgraph - generalized stacked graph - emphasizing horizontal continuity - vs vertical items - data [Stacked Graphs Geometry \& Aesthetics. Byron and Wattenberg. IEEE Trans. Visualization and Computer Graphics (Proc. Infovis 2008) $14(6)$: $1245-1252,(2008)$.] - I categ key attrib (movies) - I ordered key attrib (time) - I quant value attrib (counts) - derived data - geometry: layers, where height encodes counts - I quant attrib (layer ordering) - scalability - hundreds of time keys - dozens to hundreds of movies keys more than stacked bars: most layers don't extend across whole chart 260
Idiom: dot / line chart - one key, one value - data - 2 quant attribs -mark: points AND line connection marks between them - channels - aligned lengths to express quant value - separated and ordered by key attrib into horizontal regions	Idiom: dot / line chart - one key, one value - data - 2 quant attribs -mark: points AND line connection marks between them Year - channels - aligned lengths to express quant value - separated and ordered by key attrib into horizontal regions - task - find trend connection marks emphasize ordering of items along one item and the next - scalability - hundreds of key levels, hundreds of value levels	Choosing bar vs line charts - depends on type of key attrib -bar charts if categorical -line charts if ordered - do not use line charts for categorical key attribs -violates expressiveness \qquad principle - implication of trend so strong after [Bars and Lines:A Study of Graphic Communication. Zacks and Tversky. Memory and Cognition 27:6 (1999), Zacks and Tversky. Memory and Cognition 27:6 (1999), 1073-1079.] -"The more male a person is, the taller he/she is"	Chart axes: label them! - best practice to label -few exceptions: individual small multiple views could share axis label https://xkcd.com/833/
Chart axes: avoid cropping y axis - include 0 at bottom left or slope misleads	Chart axes: avoid cropping y axis - include 0 at bottom left or slope misleads - some exceptions (arbitrary 0 , small change matters) [Truncating the Y-Axis:Threat or Menace? Correll, Bertini \& Franconeri, CHI 2020]	Idiom: Indexed line charts - data: 2 quant attribs $-I$ key + value - derived data: new quant value attrib -index -plot instead of original value - task: show change over time -principle: normalized, not absolute - scalability - same as standard line chart \qquad	Idiom: Gantt charts - one key, two (related) values -data - I categ attrib, 2 quant attribs - mark: line - length: duration -channels - horiz position: start time (+end from duration) -task - emphasize temporal overlaps \& start/end dependencies between items -scalability - dozens of key levels [bars] - hundreds of value levels [durations]
Idiom: Slopegraphs - two values -data - 2 quant value attribs - (I derived attrib: change magnitude) -mark: point + line - line connecting mark between pts -channels - 2 vertical pos: express attrib value - (linewidth/size, color) -task - emphasize changes in rank/value - scalability - hundreds of value levels	$2 \text { Keys }$	Idiom: heatmap - two keys, one value -data - 2 categ attribs (gene, experimental condition) - I quant attrib (expression levels) - marks: point - separate and align in 2D matrix -indexed by 2 categorical attributes - channels - color by quant attrib - (ordered diverging colormap) - task - find clusters, outliers - scalability	Heatmap reordering

Idiom: SPLO
- scatterplot ma

(SPLOM) - rectilinear axe point mark
-all possible pairs -all possible pairs of axes
-scalability - one dozen attribs - one dozen attribs

- dozens to hundreds of
items

Chart axes
Visualization Analysis \& Design

- labelled axis is critical
- avoid cropping y-axis avoid cropping y-axis
-include 0 at bottom left -include 0 at bottom
-or slope misleads

Idioms: parallel coordinates

- can show only waion wetriborthes wognanal axes spatia
position -an show ony ywo atrtibutes with spatial
position channel

Idioms: parallel coordinates
scatterplot limitation
-visual representation - can show only two wotributures with
position chatial
alternative: Ine up axes in parallel to sho alernative: Iine up axes in para
many attributes with position

- item encoded $w i t h a$ line with n segments
-n is the

$-n$ is hee number of attrit
parallel coordinates

- paralie axes, iaged line for item
-rectilinear axes item as soint

-rectilinear axes. item as point
axis ordering is maio cralenge

Task: Correlation
scatterplot matrix - diagonal low-to-tigh $\stackrel{\text { negative correlation }}{\text { - diagonal ligh-tolow }}$ -uncorrelated: spread out

- parallel coordinates

- positive correlation
- parallel line segments

- paralle line segments
- negative correlation
-als segments
- uncoss at halfway point
-uncorrelated

Orientation limitations

$\cdot 2$ axes best, 3 problematic, $4+$ impossible

- parallel: unfamiliarity, training time
- radial: perceptual limits
polar coordinate asymmetry
-angles lower precision
- angles lower precision than length
\bullet nonuniform sector widthlsize depent
frequently problematic
- but sometimes can be deliberately exploited!
-for 2 atribib of very unequal imporance

Θ Layout Density

@tamaramunnner

Idiom: dual-axis line charts

- controversial
- acceptable if commensurate

Tree drawing idioms comparison

Spatial dati
-when?
-dataset contains spatial attributes and they have primary importance -central tasks revolve around understanding spatial relationships

- examples
- geographical/cartographic data
-sensor/simulation data - geographical/cartograp
-sensor/simulation data

Geographic Maps

Geographic Map

Interlocking marks shape coded area coded position coded

Thematic maps
show spatial variability of attribute ("theme") - combine geographic / reference map with (simple, flat) tabular data -join together
 - also could have point marks (cties, Ications with 2 D atlon coorss) region: categorical key atrribute in
-use to oook up palue atributes

- major idioms
-choropleth
-symbol maps
- cartograms
-dot density maps
Beware: Population maps trickin
- spurious correlations: most attributes
just show where people live
- consider when to normalize by
population density
-tied to underlyng population
but should use normalized values
-unemplyed people per 100 citizens, mean family
income

Idiom: Symbol maps

Choro

- easy to read and understand
-well established visualization (no learning curve)
-data is often collected and aggregated by geographical regions
- cons
-most effective visual variable used for geographic location
-visual salience depends on region size, not trwe importa
large regions appear more important than small ones
- color palette choice has a huge influence on the result

diom: Contiguous cartogram

interlocking marks:
shape, area, and position coded
derive new interlocking marks
-based on combination of original interlocking - based on combination of original inte
marks and new quantitative attribute
-input: target size

- goal: shape as close to the original as possible
-requirement: maintain constraints
- relative position
- contiguous boundaries with their neighbours

Idiom: Grid Cartogram

- uniform-sized shapes arranged in rectilinear grid - maintain approximate spatial position and arrangement

Many color spaces

Many color spaces

- good for encod hue (H), saturation (S) - good for encoding
- but not standard grap sttools colorspace

Many color spaces
Luminance ($\left(L^{*}\right)$, hue (H), saturation ((S)

- good for encoding
RGB: good for display hardware

RGB

- RGB: good for display hardware $\begin{gathered}\text { Conensorstite egs } \\ \text { colociube }\end{gathered} \quad \square \square \square \square \square \square$

Many color spaces

- Luminance (L^{*}), hue ((H), saturation (S) - good for encoding
- but not standard grap ard graphicstools color - RGB: good for display hardware
 - hard to interpret. poor for encoding

Many color spaces - good for encoding

- but not standard graphicstools colorspace
- paor food for discoding Ein hardware
- poor for encoding \& interpolation
- CIE LAB ($\left.L^{*}{ }^{*} b^{*} b^{*}\right)$: good for interpolatio
 - HSLHSV: somewhat better for encoding

0

HSL/HSV: Pseudo-perceptual colorspace

HSL better than RGB

for encoding

but beware
-L lighness $=\mathrm{L}^{*}$ luminance
Conese sthte enc
Coroctue
$\square$$\square \square \square \square \square$
$\underset{\substack{\text { Litontus } \\ \text { Hutememe }}}{\substack{\text { then }}} \quad \square \square \square \square \square \square$
Luminaneverulues $\square \square \square \square \square \square$

Many color spaces

- Luminance (L^{*}), hue (H), saturation (S) - good for encoding
- but not standard graphicstools colorspa
- RGB: good for display hardware
- poor for encoding \& interpolation
- ${ }^{\text {CIE }}$ LAB ($L^{*} a^{*} b^{*}$): good for interpolation
- hard to interpret, poor for encoding
- HSLLHSV: somewhat better for encoding
- huelsaxuration wheel intutitive
- beware: only sseddo-perceptua!
-lightess (L) or value (M) \# uminance

3

Color Constrast \& Naming	Interaction with the background	Interaction with the background: tweaking yellow for visibility - marks with high luminance on a background with low luminance	Interaction with the background: tweaking yellow for visibility - marks with medium luminance on a background with high luminance
Interaction with the background: tweaking yellow for visibility - change luminance of marks depending on background	Color/Lightness constancy: Illumination conditions Image courtesy of John McCann via Maureen Stone	Color/Lightness constancy: Illumination conditions Image courtesy of John McCann via Maureen Stone	Contrast with background
Contrast with background Black and blue? White and gold? https://imgur.com/hxjjUQB https://en.wikipedia.org/wiki/The_dress	Bezold Effect: Outlines matter [Seriously Colorful: Advanced Color Principles \& Practices. Stone.Tableau Customer Conference 2014.]	Color Appearance - given $\mathrm{L}, \mathrm{a}^{*}, \mathrm{~b}^{*}$, can we tell what color it is? -no, it depends - chromatic adaptation - luminance adaptation - simultaneous contrast - spatial effects - viewing angle -...	Color naming
Color naming	Color naming	Color naming - nameability affects - communication -memorability - can integrate into color models -in addition to perceptual considerations	Color is just part of vision system - Does not help perceive -Position -Shape -Motion -...

Map Other Channels	Angle / tilt / orientation channel - different mappings depending on range used $\xrightarrow[\substack{\text { Sequential ordered } \\ \text { line mark or arrow glyph }}]{\substack{\text { Diverging ordered } \\ \text { arrow glyph }}}$ - nonlinear accuracy -high: exact horizontal, vertical, diagonal ($0,45,90$ deg - lower: other orientations (eg 37 vs 38 degrees)	$\stackrel{\star i}{\Delta}$ $\downarrow \downarrow$ Cyclic ordered arrow glyph	Map other channels	Map other channels - size $\begin{array}{lll}\text {-aligned length best } & \rightarrow \text { Length } & \rightarrow \text { Area } \\ \text { - length accurate } & - & \end{array}$ $-2 D$ area -3D volume poor - shape -complex combination of lower-level primitives -many bins
Map other channels - great for highlighting (binary) - use with care to avoid irritation	Visualization Analysis \& Design Interactive Views (Ch 11/12) Tamara Munzner Department of Computer Science University of British Columbia @tamaramunzner		How to handle complexity: I previous strategy \rightarrow Derive 듣둗두드를를 $\rightarrow 8$ - derive new data to show within view	How to handile complexit: I Preveuus strategy +2 more
Manipulate View	Manipulate Θ Change over Time \qquad $\cdots O$ \qquad		Change over time - change any of the other choices -encoding itself - parameters - arrange: rearrange, reorder -aggregation level, what is filtered... - interaction entails change - powerful \& flexible	Idiom: Re-encode made with Tableau, http://tableausoftware.com
Idiom: Change parameters - widgets and controls \qquad checkboxes dropdowns/comboboxes - pros clear affordances, self-documenting (with labels) - cons - uses screen space - design choices - controls \& canvas	Idiom: Change order/arrangement - what: simple table - how: data-driven reordering - why. find extreme values, trends [Sortable Bar Chart] https://observablehq.com/@d3/sortable-bar-chart made with D3	--	Idiom: Reorder - what: table with many attributes - how: data-driven reordering by selecting column - why: find correlations between attributes http://carlmanaster.github.io/datastripes/] made with D3	

-alternative to jump cuts

- best case for animation
- staging to reduce cognitive load

Idiom: Animated transition - tree detail

Selection	
\bullet selection: basic operation for most interaction	$\because \because$
\bullet design choices	\ddots
- how many selection types	

- how many selection types?
interaction modalities
- cicktrap (heayyweies
- licktrap (heavyweight) vs hover (lightweight but not avaiable on most touchscreens)
- multiple click types shift-click, option-click,

Proximity beyond dickhhover (touching vs nearby vs distant)

- appiciction semantics
-can selection be null! v s replacing selection
-can slection be null
-primary v secondary (ex sourceltarget nodes in network)
(

Navigate: Changing viewpoint/visibility $\quad \Theta$ Navigate

- change viewpoint
- change viewpoint
-changes which items are visible within view
camera metaphor
- move up/down/sidew

	\rightarrow PanTranstate
	$\because \ddots\rangle$

Idiom: Animated transition + constrained navigation

- example: geographic map
-simple zoom, only viewport changes, shapes preserved

z^{2000} Io Bounding Box

Manipulate

Interaction technology

- what do you design for? - large screens, hover, multiple click -touch interaction on mobile? - small screens, no hover, just tap
-gestures from video / sensors? - ergonomic reality vs movie bombast
- eye tracking!

IHace Tom Crise - Alex Kuufrimn (5 m

- Visual (interat design

- design choices: typical visual channels
-change item color
- but hides existing color coding
-change size (ex: increase outline mark linewidth)
-change shape (ex: from solid to dashed line for link mark)
- unusual channels: motion
motion: usually avoid for single view
with multiple views, could justify to draw attention to other views

Navigate: Reducing attributes - continuation of camera metaphor -slice
- sice
$\begin{gathered}\text { show only items matching specific valum } \\ \text { for given atrribute: slicing plane }\end{gathered}$ - axis aligned, or arbiticray alignment
-cut
hrow only items on far slide of plane
from came -project
- change mathematics of image creation
- orthographic
- perspective
${ }^{\text {- perspective }}$ - many thers Meratar. cabinet.

\qquad
$\because \because \rightarrow$
\rightarrow Project $\because \because \rightarrow \mid \cdot \cdot$

teraction benefits

interaction pros
-major advantage of computer-based vs paper-based visualization -flexible, powerful, intuitive

- exploratory data analysis: Change as you go during analysis process nimated transitions provide excellent sups supa
animated transitions provide excellent support
- empirical evidence that animated transitions help people stay oriented

limions

- interaction has a time cost
-sometimes minor, sometimes significant
- controls may take screen real estate
- users may not interact as planned by designer
-NYTimes logs show $\sim 90 \%$ don't interact beyond scrollyelling - Aisch, 2016

Interactive Views (Ch 11/12) II

Tamara Munzner

Tamara Munzner Department of Computer Science
University of British Columbia
@tamaramunner University of Britit
@tamaramunzzer

\oplus Partition
(.).

Idiom: Overview-detail views

 - encoding: same or diffe- ex: same (birds-eye map)
- data subset shared - data: subset shared - viewpoint differences:
subset of data items - navigation: shared -bidirectional linking
- other differences -(window size)

How to handle complexity: I previous strategy + 2 more
How to hand
\rightarrow Derive

\rightarrow Derive	Manipulate	Facet
	$\begin{aligned} & \oplus \text { Change } \\ & \because \because \quad 0 \quad \\ & \square \end{aligned}$	$\begin{gathered} \oplus \text { Suxapose } \\ \ldots . \cdot \\ \hline \ldots . \end{gathered}$
- derive new data to show within view - change view over time	Θ Select $\circ \cdot \cdot$	Θ Partition $[\cdots+\cdots \cdots$
- facet across multiple views	$\begin{gathered} \oplus \text { Navigate } \\ \quad \because \because\rangle \end{gathered}$	Θ Superimpose .\bullet° $\because .$.

Facet
© Juxtapose
$\left\lfloor\ldots L^{\circ}\right.$
\oplus Partition
$\ldots ..)^{-}+\ldots \cdot$
\oplus Superimpose

Linked views: Directionality

- unidirectional vs bidirectional linking -bidirectional almost always better! see how regions contiguous in one
view are distributed within another - powerful and pervasive interaction idiom
- encoding: different
-multiform

data: all shared

-all items shared
-different attributes across the views

- aka: brushing and linking

Idiom: Tooltips

popup information for selection
-hover or click
specific case of detail view:
provide useful additional detail on demand
-beware: does not support overview!

- always consider if theres a way to visual
encode directly to provide overview
"If you make a rollover or toolti, assume
nobody will se it if fits important make it

[htups/lwwwhighcharts com/denoldyramicmasterdetail]
Juxtapose views: tradeoffs

- juxtapose costs

-display area
$\cdot 2$ views side by sid

- juxtapose benefits

- cognitive load: eyes vs memory
lower cognitive load: move eyes between 2 views
higher cognitive load: compare single changing view to memory of previous state
Multiple Views
$\sim \sim$

Idiom: Small multiples

- encoding: same

-ex: line charts

- data: none shared
- different slices of datase
- items or attributes
-ex: stock prices for different
ex.stock pricic
companies

Juxtapose vs animate
- animate: hard to follow if many scattered changes or many frames
many frames
- veast special case: animated
trasitions

Juxtapose vs animate
many scattered forlow if many frames many frames - vs easy special case: animated
transtions juxtapose: easier to compar
across small muttiples across small multiples different conditions (colo
same gene (layout)

Partition into views

- how to divide data between views Θ Partition into Side-by-Side Views -spit into regions by attributes
-encodes association between -encodes association betw
using spatial proximity using spatial proximity
-order of spitith has maior implications
for what patterns are visible

View coordination: Design choices

Idiom: Reorderable lists
System:Improvise
Facet
(1) Juxtapose L.
(®) Partition
$\ldots+\cdot \cdot+\ldots \cdot \cdot \cdot$
\oplus ©uperimpose

Partitioning: Recursive subdivision

- switch order of splits -type then neighborhood - switch color
-by price variation
- type patterns
- within specific type, which
neighborhoods inconsistent

Static visual layering
- foreground layer: roads
-hue, size distinguishing main from minor -high luminance contrast from backsor - background layer: regions
-desaturated colors for water, parks, land areas - user can selectively focus attention

Partitioning: Recu

then by type

- flat, terrace
- years as rows
- month ${ }^{\text {as columns }}$
- molor by pricice
neighborhood patterns

Superimpose layers
layer
regio
- each set is visually
- extent: whole view
- design choices
- how many layers, how to distinguish?
- encode with different nonoverlapping channels
- two layers achievable, three with careful design
- two layers achievable, three with carefull design

Dynamic visual layering
interactive, based on selection
- one-hop neighbour highlighting
click (hearyweight)

- superimpose within same frame -color code by year

partitioning

-split by site, rows are barley varieties
main-effects ordering
-derive value of median for group
-order views themselves by site median

+osesesen

$=2$

Reduce：Aggregation \＆Filtering（Ch 13）
Tamara Munzner
Department of Computer Science
University of British Columbia
＠tamaramunner

Redu

 © Aggregate

Θ Aggregate
\rightarrow ltems
\rightarrow Attribute

diom：scented widgets
－augmented widgets show information scent
better cues for information foraging：show whether
value in driling down further vs looking elsewhere

H．｜l． 4 U．
 Natind

$=2$ $=2$ $=2$ $=2$

How to handle complexity： 3 previous strategies

$$
\begin{aligned}
& \text { acet across } \\
& \text { multiple views }
\end{aligned}
$$

How to handle complexity： 3 previous strategies＋I more

\rightarrow Derive	Manipulate	Facet	Reduce
$\text { 䛶䙵 } \rightarrow \star$	Θ Change \qquad \circ	$\begin{gathered} \oplus \text { Juxapose } \\ \left\lfloor_{1 .} \cdot \cdots^{\prime} \mid \ldots\right. \end{gathered}$	© Filter 北
－derive new data to show within view －change view over time	Θ Select lo…		
－faceet across multiple views	（®）Navigate	© Superimpose	（®）Embed
－reduce items／attributes within single view	\because		

Filter
eliminate some elements
－either items or attribute
according to what？
－any possible function that partitions
any possible function
dataset into two sets
－attribute values bigge
atribute values bigger／maller than x －noise／signal

－filters vs queries

query：start with nothing，add in elements
－filers：start with everything，remove elements
－best approach depends on dataset size
Idiom：histogram －static item aggregation task：find distribution
－data：table
－derived data
－new table：keys are bins，values are counts

－bin size crucial
－pattern can change dramatically depending on discretizatio
opportunity for interaction：control bin size on the fly

cen

Idiom：boxplot
static item aggregation
static item aggregation
task：find distribution
data：table
deriat tabled data
derived data
-5 quant atrribs
$\stackrel{-5 \text { quant attribs }}{- \text { median：central line }}$
－Ower and upper quartile：boxes
－Iower upere fencesw whiskers
－outliers beyond fence cutoffs explicitly shown
scalability
－unlimited number of items！

Reduce items and attributes Reducing Items and Attributes
to strightorward and intuitive con：out of sight out of
con：out of sight，out of \min

Idiom：cross filtering	System：Crossfilter
－item filtering	
－coordinated views／controls combined	
－all scented histogram bisliders update when any ranges change	
http：／／square．github．io／crossfilter https：／／observablehq．com／＠uwdatalinteraction	
Idiom：scented widgets	
－augmented widgets show information scent	
－better cues for information foraging：show whether value in drilling down further vs looking elsewhere	Ilin zorosis Hini．
concise use of space：histogram on slider	

diom：Continuous scatterplot

－static item －data table

－derived data：
derived data：table
-1 table x for pixels
－quant atrrib：overplot density
dense space－filling 2D matrix －color：
sequential categorical hue + sequential categorical hue e＋
ordered luminance colormap －scalability
no linits on overploteting：
millions of titems

Spatial aggregation

MAUP: Modifable Areal Unit Problem
-changing boundaries of cartographic regions can yield dramatically different results

Attribute aggregation: Dimensionality reduction

attribute aggregation

-derive low-dimensional target space from high-dimensional measured space - capture most of variance with minimal error
se when can't directly measure what you care about
-true dimensionality of dataset conjectured to be smaller than dimensionality of measurements - latent factors, hidden variables

9 D measured space | derived data: |
| :--- |
| 2 D target space |

Embed: Focus + Context

 combine focus + context info within single view- vs multiple views
- lide data
- selectively filter and agregate
- carefully chosen to
- carefully chosen to integrate F+C

Gerrymandering: MAUP for political gain

Dynamic aggregation: Clustering
clustering: classification of items into similar bins - based on similiarity measure
-hierarchical algorithms produce "similarity tree": cluster hierarchy

- agglomerative clustering: start w/ each node as own cluster, then iteratively merge
cluster hierarchy: derived data used w/ many dynamic aggregation idioms -cluster more homogeneous than whole dataset
- statistical measures \& distribution more meaningtul

Idiom: Hierarchical parallel coordinates

- dynamic item aggregation
derived data: cluster hierarchy
encoding:
line mean, width by min/max values
- color by proximity in hierarchy

Visualization Analysis \& Design
Embed: Focus + Context (Ch 14)

Tamara Munzner Department of Computer Science University of Bri @tamaramunzner

Idiom: DOITrees Revisited

$$
\begin{aligned}
& \text { focus+context choice: elide } \\
& \text { - some items dyamicaly filtered ou }
\end{aligned}
$$

$$
\begin{aligned}
& \text { focustcontext choice: lelde } \\
& \hline \text { - some tems dynamically fitered out } \\
& \text { - some items dynamicall agregated toge } \\
& \text { - some items show in deteai }
\end{aligned}
$$

Distortion costs and benefits

- benefits
-combine focus and context
costs
-length comparisons impaired - topology comparisons unaffected:
connection, containment connection, containment effects of distortion unclear
original structure unfamiliar
original structure unfamiliar
object constancy/tracking may be
-object con
impaired

Further reading, Ch 2 full

199.

Inanomy. InfVVis 2004, P I51-158,2004.

Data Visulalizaion: Prinipiples and Practice, 2nd ed.Alexandrut Telea, CRC Press, 2014.

-The Visualization Handobook. Charles Hansen and Chris ohnson, eds. Academic Press, 2004. - Visualization Tookkit:An Obiect-COrerented Approach to 3 B Graphics, 4th ed.Will schroeder, Ken Martinn,

- Polaris:A Aystem for Puery.Analysis and Visualization of Multi-dimensional Realational Databases
(extended paper) Chris Stote, Diane Tang and Pat Hanrahan. IEEETVCGG $8(1) 52$-65 2002.

Further reading, usability

7 Step Guide to Guerrilla Usability Testing, Markus Piper
Art of Guerrilla Usibility Testins David Peter Sintestinamethod
The Art of Guerrilla Usability Testing, David Peter Simon
Discount Usability: 20 Years, Jakob Nielsen

- hteps://www.nngroup.comarariclesd discount-usability-20-years

Interaction Design: Beyond Human-Computer Interaction

- Preece, Sharp, Rogers.W Wile, 4th edition, 2015.

About Face:The Essentials of Interaction Design

- Cooper, Reimann, Cronin, Noessel.W.Wiey, 4th edition, 2014

Task-Centered User Interface Design. Lewis \& Rieman, 1994 - hest://hcibibiorortcuid/

Further reading: Ch 7 selected
Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, 2014.

- Visualizing Data. Cleveland. Hobart Press, 1993.
- A Brief History of Data Visulization. Friendly. 2008.
http://www.datavis.ca/milestones

Further reading: Ch 9 selected

Visualiz 2014.

-Chap 9:Arrange Networks and Trees
Visual Analysis of Large Graphs: State-of-the-Art and Future Research Challenges. von Simple Algorithms for Network Visualization:A Tutorial. McGuffin. Tsinghua Science and Technology (Special Issue on Visualization and Computer Graphics) I7:4 (2012), $383-398$ Drawing on Physical Analogies. Brandes. In Drawing Graphs: Methods and Models. LNCS
Tutorial, 2025, edited by M. Kaufmann and D. Wagner, LNCS Tutorial, 2025, pp.71-86. Tutorial, 2025, edited b
Springer-verlag, 2001.
http://www.treevis.net Treevis.nen:A A Tree Visulalization Reference. Schulz. IEEE Computer
Graphics and Applications 31:6 (2011), II-15. Perceptual Guidelines for Creating Rectangular Treemaps. Kong. Heer, and Agrawala. IEEE
Trans.Visualization and Computer Graphics (Proc. InfoVis) I6:6 (2010), 990-998.

Further reading, Ch 3 full

Further Reading: Ch 5

 CRC Press 2014

Further reading, Ch 7 full

Further reading, Ch 9 full

Further reading: Ch 4
Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press,
2014 ,
-Chap 4:Analysis: Four Levels for Validation
-Storks Deliver Babies ($p=0.008$). Robert Matthews. Teaching Statistics 22(2):36-38, 2000 The Earth is spherical ($p<0.05$): alternative methods of statistical inference. Kim J. Vicen
and Gerard L.Torenvlie.T Theoretical lssues in Ergonomics science, $I(3): 248-271,2000$. The Prospects for Psychological Science in Human-Computer Interaction. Allen Newell
and Stuart K. Card. Journal Human-Conputer Interaction (3):209.-242. 1985 . How to do good research, get it published in SIGKDD and get it cited!!, Eamonn Keogh, - How to do good resear
SIGKDD Tutorial 2009 .

False-Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis Allows

Psychological Science 22(1):1359-1366, 201 I.
-Externalisation - how writing changes thinking..Alan Dix. Interfaces, Autumn 2008.

Further reading: Ch 6 selected

Visualization Analysis and Design. Tamara Munzner. CRC Press, 2014 -Chap 6: Rules of Thumb
Designing with the Mind in Mind: Simple Guide to Understanding User Interface Design Rules. Jeff Johnson. Morgan Kaufmann, 2010. - Chap 12:We Have Time Requirements

The Non-Designer's Design Book. 3rd edition. Robin Williams. Peachpit Press, 2008.

Further reading: Ch 8 selected

Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, 2014.
-Chap 8:Arrange Spatial Data
How Maps Work: Representation,Visualization, and Design. MacEachren. Guilford Press, 1995.
Overview of visualization. Schroeder and. Martin. In The Visualization
Handbook, edited by Charles Hansen and Christopher Johnson, pp. 3-39
Elsevier 2005. Elsevier, 2005.
Real-Time Volume Graphics. Engel, Hadwiger, Kniss, Reza-Salama, and Weiskop
AK Peters, 2006. AK Peters, 2006
Overview of flow visualization. Weiskopf and Erlebacher. In The Visualization
Handbook edited by Elsevier, 2005.

Further reading: Ch 10 selected

Visualization Analysis and Design.Munzner. AK Peters Visualization Series, CRC Press,
-Chap 10:Map Color and Other Channels

- ColorBrewer, Brewer.
- Color In Information Display. Stone. IEEEVis Course Notes, 2006.
- -htep:///wwuw.stonesc.com/Vis06

Rainbow Color Map (Still Considered Harmful. Borland and Taylor. IEEE Computer Graphics
and Applications 27:2 2 (2007), 14-17.
ns $27: 2$ (2007), 14-17.
Ware. Morgan Kaufmann, 2008.

- Information Visualization: Perception for Design, 3rd edition. Ware. Morgan Kaufmann /
Academic Press, 2004. https://cran.r.-project.org/web/packagages/viridis/vignettes/intro-to-viridis.html

Guerilla/Discount Usability
a evis gives substantial coverage of major usability problems gen is not statisticical ssignificancel quantitative user studies
think-aloud protocol
-contextual inquiry (conversations back and forth) vs fly on the wall (you're silent)

Further reading, Ch 6 full
Further reading, Ch 6 Full

Further reading, Ch 8 full

The

Further reading, Ch 10 full

- Information Visualization: Perception for Design, 3rd edition, Colin Ware, Morgan Kaufmann, 2013. Representing Colors as Three Numbers, Maureen Stone, IEEE Computer Graphics and Applications,

254) July 2005,
 \qquad
 Ho(No to Lie withV isualization
10(3) May/June 1996, pp 288-273.

- Information Visualization: Perception for Design, 3rd edition, Colin Ware, Morgan Kaufmann, 2013.
 LloydA.treinish. Proc..1EEEV visualization (vis) 1995,118 -125.

Further reading: Ch II selecter

- Visualization Analy
CRC Press, 2014.

CRC Press, 2014.
-Chap 11 :Manipulate View
-Chap II: Manipulate View
Animated Transitions in Statistical Data Graphics. Heer and Robertson IIEET Animated Transitions in Statistical Data Graphics. Heer and Robertson. IEEE Trans.
on Visual ization and Computer Graphics (Proc. InfoViso7)
I on Visualization and Computer Graphics (Proc. InfoVis07) I3:6 (2007),
1247.

- Selection. 524,288 Ways to Say "This is Interesting" Wills. Proc.IEEE Symp Selection: 524,288 Ways to Say "This is Interesting".
Information Visualization (InfoVis), pp. 54-6I, 1996.
Smooth and efficient zooming and panning. van $\mathrm{W}_{\mathrm{ijk}}$ and Nuii. Proc. IEEE Symp. Infooth and efficient zooming and panning.van Wijik $^{\text {and }}$.
Informat Visual ization (InfoVis), pp. 15-22, 2003 .
Starting Simple - adding value to static visualisation through simple interaction. Dix and Ellis. Proc. Advanced Visual Interfaces (AVI), pp. 124-134, 1998.

Further reading: Ch 13 selected

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, Clis.
Chap 13: Reduce Items and Atributes
Hierarchical Aggregation for Information Visualization: Overview, Techniques and Design Guidelines. Elmquist and Fekete. IEEE Transactions on Visualization and
Computer Graphics 16:3 (2010), 439-454.
A Review of Overview+Detaii, Zooming, and Focus+Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 41:1 (2008), I-31. - A Guide to Visual Multi-Level Interface Design From Synthesis of Empirical Study Evidence. Lam and Munzner. Synthesis Lectures on Visualization Series, Morgan
Claypool, 2010 . Evidence. Lam and
Claypool, 2010.

Design Study Methodology

Design study methodology: definitions

Further reading, Ch II full

- Starting Simple - Adding Value to Static Visualisation Through
G. Elis. Proc.Advanced Visual Interfaces (AVI) I998, 124-1 134.

Animated Transitions in Statistical Data Grahhics effrey Heer and Gea IEEETVCG (Proc. InfoVis 2007) 13(6): :140-1247, 2007. [Archived version] - Selectio
$54-61$.

54-61.

- Pad++:A Zooming Graphical Interface for Exploring Alternate Interface Physics Ben
Bederson, and James D Hollan, Proc UIST 94.

$$
\begin{aligned}
& \text { Bederson, and James D Hollan, Proc UIST } 94 . \\
& \text { - LiveRAC - InteractiveV Visual Exploration of System Management Time-Series Data. Peter }
\end{aligned}
$$

$$
\begin{aligned}
& \text { McLachlan, Tamara Munzner, Eleftherios Koutsofosos, See } \\
& \text { Factors in Computing Systems (CHI) 2008, } 1483-1492 .
\end{aligned}
$$

- Rapid Controlled Movement Through avirtual 3D Workspace Jock Mackinlay, Stuart Card pp 171-176.
- Smooth and Efficient Zooming and Panning. Jack J. van Wijk and Wim A.A. Nuii, Proc.
InfoVis 2003 , p. I I 5 -22.

Further reading: Ch 12 selected
Visuliazaion Analysis nand Desig. Munzer: Ak Peeers Visularizaion Sereies, CRC Press, 2014.

Further reading: Ch 14 selected

- Visualization Analysis and Design. Munzner. AK Peters / CRC Press, Oct 2014. Chap I4: Embed: Focus + Context
A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. Cockburn,
Karlson, and Bederson. ACM Complen
Karlson, and Bederson. ACM Computing Surveys 41:1 (2008), 1-31.
A Guide to Visual Multi-Level Interface Design From Synthesis of Empirical Study
Evidence. Lam and Munzner. Synthesis Lectures on Visualization Series, Morgan Evidence. Lam and
Claypool, 2010.
Hierarchical Aggregation for Information Visualization: Overview, Techniques and Design Guidelines. Elmqvist and Fekete. IEEE Transactions on Visualization and Computer Graphics 16:3 (2010), 439-454
A Fisheye Follow-up: Further Reflection on Focus + Context. Furnas. Proc.ACM Conf. Human Factors in Computing Systems (CHI), pp. 999-1008, 2006.
Methodology for problem-driven work

Methodology for problem-driven work	
- definitions	边

- 9-stage framework
- 32 pitfalls \& how to avoid them
- comparison to related methodologies

9-stage frameworkIearn winnow cast

discover design

Further reading, Ch 12 full

Further reading, Ch 14 full

Lessons learned from the trenches: 21 between us

9-stage framework

9-stage framework
9-stage framework
iterative
considerations

EXample FromTheTrenches

Premature Collaboration!

PowerSet Viewer 2 years / 4 researchers
\square
0.5 years / 2 researchers

EXample From The Trenches

Premature Collaboration!

PowerSetViewer

WikeVis
2 years / 4 researchers 0.5 years

- Fellow tool builders
- Data promised.

Design study methodology: 32 pitfalls

Collaborator winnowing

I'm a domain expert!
Wanna collaborate?

Collaborator winnowing

Collaborator winnowing

Talk with many, stay with few!

| Metaphor
 Design Space
 know |
| :---: | :---: | :---: | :---: |
| METAPHOR
 Design Space | METAPHOR
 Design Space | MeTAPHOR
 Design Space - okay
 Think poor broad! \qquad \qquad
 select | |
| I can write a design study paper in a week! | METAPHOR
 Horse Race vs. Music Debut | Example From The Trenches Don't step on your own toes! | Reflections from the stacks:Wholesale adoption inappropriate
 - ethnography
 - rapid, goal-directed fieldwork
 - grounded theory
 -not empty slate: vis background is key
 - action research
 -aligned
 - intervention as goal
 - transferability not reproducibility
 - personal involvement is key
 -opposition
 - translation of participant concepts into visualization language
 - researcher lead not facilitate design
 - orthogonal to vis concerns: participants as writers, adversarial to status quo, postmodernity ${ }_{\text {668 }}$ |
| Next Steps | What-Why-How Analysis
 - this approach is not the only way to analyze visualizations! -one specific framework intended to help you think -other frameworks support different ways of thinking - following: one interesting example | Algebraic Process forVisualization Design
 - which mathematical structures in data are preserved and reflected in vis -negation, permutation, symmetry, invariance
 [Fig I.An Algebraic Process for Visualization Design. Carlos Scheidegger and Gordon Kindlmann. IEEE TVCG (Proc. InfoVis 20I4), 20(I2):2I8I-2I90.] | Algebraic process:Vocabulary
 - invariance violation: single dataset, many visualizations -hallucinator
 - unambiguity violation: many datasets, same vis -data change invisible to viewer - confuser
 - correspondence violation:
 -can't see change of data in vis - jumbler
 -salient change in vis not due to significant change in data - misleader -match mathematical structure in data with visual perception
 - we can X the data; can we Y the image? -are important data changes well-matched with obvious visual changes? |

Scenario
data: many metrics across many machines
-100 machines, belonging to 20 companies -CPU, memory, disk I/O, network traffic 1 month
-CPU, memory, disk I/O, network traffic
time series + company name + company sector (finance/tech/entertainment/other) task: forensic analysis to determine possible causes of crashes

[^0]: groups each

