Defining visualization (vis)
Computer...ased visualization systems provide erisual r
deesigneat tonelp people carry
Conpmuter-based visualization systems provide risual representations of datasets
designet What's Vis, and Why Do It? (Ch 1)

Tamara Munzner

 Department of Computer ScienceUniersity of British Columbia ©tamaramunner

Why have a human in the loop?

Computer-based prisualization systems provide visual rep		

rather than replace people with computational decision.making methods.
\qquad
Why depend on vision?

human visual system is high-bandwidth channel to brain

- overview possible due to background processing
subijective experience of seeing everything simultaneously
significant processing occurs in paralle and preattentively
sound: lower bandwidth and different semantics - overview not supported
subjective experience of sequential stream touch/haptics: impoverished record/replay capacity -only very low-bandwidth communication thus far taste, smell: no viable record/replay devices

Why analyze?
 imposes structure on

huge design space
scaffold to help you think
analyzing existing as stepping stone
analyzing existing
to designing new
most possibilities ineffective for
marticular taskkddata combination

Why have a human in the loop?
Computer-basedvisumpization systems provide visual representations oldatasets:
designed to hel peopies arry out tasks more effectively. Visualization is suitable when there is a need to augment human capabilities
rather than replace people with computational decisision-making methods.

- don't need vis when fully automatic solution exists and is trusted many analysis problems ill-specified
many analysis problems ill-specified
-don't know exactly what
ouestions to ask in
- possibilities
-long-term use for end users (ex: exploratory analysis of scientific data) -presentation of known results (ex: New York Times Upshot)
stepping stone to assess requirements before developing models
help automatic solution developers refine \& determine parameters
-help end users of automatic solutions verify, build trust

Why represent all the data?

Computer-based visualization systems provide visua representations of datasets
designed to help people carry out tasks more effectively?

- summaries lose information, details matter
-confirm expected and find unexpected patterns -assess validity of statistical model

Anscombe's Quarte

 Identical statistics $\frac{1 \text { Identical }}{\times \text { mean }}$$\times$ variance

Why analyze
imposes structure on huge design space -scaffold to help you think
systematically about choices -analyzing existing as stepping stone -analying existing -most possibilities ineffective for particular task/data combinatio

Defining visualization (vis)
Computer-based visualization systems provide visual rep.
designed to help people carry out tasks more effectively.
Why?...

Why have a human in the loop?
Computer-based dicenilization systems provide evisual representations of datasets
designed to hell peopie. arry out tasks more effectively.

Why use an external representation?

Computer-based visualization systems provid visual representations
designed to help people carry yout tasks move eviecivels
external representation: replace cognition with perception

What resource limitations are we faced with?

Vis designers must take inta account htreve evy different kinds of resource limitations: those of computers, of humans, and of displays.

- computational limits
- computation time, system memory
- display limits
-pixels are precious \& most constrained resource
information density: ratio of space used to encode info vs unused whitespace adeoff between clutter and wasting space
-human limits
-human time, human memory, human attention

Visualization Analysis \& Design
Analysis: Nested Model (Ch 4)

Tamara Munzner
 Department of Computer Science University of British Col
 University of Britit @tamaramunzner

What does data mean

What does data mean?

14, 2.6, 30, 30, 15, 100001
What does this sequence of six numbers mean
nts far from each other in 3D space? - something else!?
Basil,, S, Pear

What does data mean?
What does this sequence of six numbers mean?

- What does this sequence of six numbers

What does data mean?
14, 2.6, $30,30,15,100001$
What does this sequence o
, wo poens this sequence of six numbers mean two points far from each other in 3D spacee.
ace, with 15 links beeween them, and a weight of foocol for the link?

What does data mean?
What does this sequence of six numbers mean?
tww poins far from each other in 3D space?
Wo points close to each other in $2 D$ space, with 15 links beeween them, and a weigh of 100001 for the ink -something else?!

What does data mea

What does data mean?
$14,2.6,30,30,15,100001$

- What does this sequence of six numbers mean?
-two points close to each other in 2 D space, with 15 links beeween them, and a weight of 100001 for the link?
- somenthing else!!
Basiil. 7 S. Pear

Basil, 7, S, Pear

What does data mean?

$4,2.6,30,30,15,100001$
What does this sequence of six numbers mean
-two points far from each other in 3D space?
ewo poins close to each other in 2 D space, with 15 links bewween them, and a weight of 100001 for the link

- somenting esee. Basil,, S, Pear

- What about this data?
- food stipment of produce (basil \& pear) arived in satisfactory condition on 7 Th day of month

Now what?

- What does this sequence of six numbers mean? -two points far from each other in 3D space? - two points close to each other in 2D space, with 15 links between them, and a weight of 10000 I for the link? - something else?! Basil, 7, S, Pear - What about this data? - food shipment of produce (basil \& pear) arrived in satisfactory condition on 7th day of month - Basil Point neighborhood of city had 7 inches of snow cleared by the Pear Creek Limited snow removal servic - lab rat Basil made 7 attempts to find way through south section of maze, these trials used pear as reward food				
Items \& Attributes - item: individual entity, discrete -eg patient, car, stock, city -"independent variable"				
	Name	Age	Shirt Size	Favorite Fru
	${ }_{\substack{\text { Amy } \\ \text { Basil }}}$	${ }_{7}^{8}$	${ }_{\text {s }}^{\text {s }}$	Apple Pear Pr
	Basil Clara	,	$\stackrel{s}{4}$	${ }^{\text {Pear }}$ Durian
	Desmond	13	1	Elderber
		12	L	
	${ }^{\text {Fanny }}$	10	s	${ }_{\text {L Lychee }}$
	¢ ${ }_{\text {George }}$	${ }_{8}^{8}$	${ }_{\text {M }}$	${ }_{\text {Leqange }}$
	$\underset{\text { Amy }}{\text { Ida }}$	10 12	${ }_{m}^{m}$	

- semantics: real-world meaning

Items \& Attributes

- item: individual entity, discrete -eg patient, car, stock, city "independent variable"

Name	Age	Shirt Size	Favorite Fruit
Amy	8	S	Apple
Basil	7	s	pear
Clara	9	m	Durian
Desmond	13	\pm	Ezderberry
Ernest	12	I	
Fanny	10	s	Lychee
George	9	m	Orange
Hector	${ }^{8}$	${ }_{4}^{\text {I }}$	${ }^{\text {Loguat }}$
Amy	12	n	Orarge

item: person

item: individual entity, discrete

-eg patient, car, stock, city

- eg patient, car, stock, city
-"independent variable"
attribute: property that is
measured, observed, logged...
-eg height, blood pressure for patient
- eg horsepower, make for car
-"dependent variable"

Name	Age	Shirt Size	Favorite Fruil
${ }_{\text {amy }}$	${ }^{8}$	s	${ }^{\text {Apple }}$
${ }_{\text {Basil }}$	\%	$\stackrel{s}{5}$	${ }^{\text {Pear }}$
${ }_{\text {Clara }}^{\text {Desmond }}$	${ }^{9}$	${ }^{\text {m }}$	${ }_{\text {der }}^{\text {Durian }}$ Piderbery
Ernest	12	I	Peach
${ }^{\text {Fanny }}$	10	s	${ }^{\text {Lychee }}$
George	$\stackrel{9}{8}$	${ }^{\text {m }}$	orange
Hectos	8	${ }_{n}$	${ }^{\text {Loguat }}$
amy	12	m	orange

item: person

Items \& Attributes

- item: individual entity discrete -eg patient, car, stock, city -"independent variable"
- attribute: property that is measured, observed, logged...
- eg height, blood pressure for patien
eg horsepower, make for car
"dependent variable"

	Visualization Analysis \& Design Marks \& Channels (Ch 5) I Tamara Munzner Department of Computer Science University of British Columbia @tamaramunzner	Visual encoding - how to systematically analyze idiom structure?	Visual encoding - how to systematically analyze idiom structure?
Visual encoding - how to systematically analyze idiom structure? - marks \& channels -marks: represent items or links -channels: change appearance of marks based on attributes	Marks for items - basic geometric elements Points \rightarrow Lines \rightarrow Interlocking Areas 2D - 3D mark: volume, rarely used	Marks for links	Containment can be nested [Untangling Euler Diagrams, Riche and Dwyer, 2010]
	Definitions: Marks and channels \qquad - marks -geometric primitives		
Visual encoding - analyze idiom structure as combination of marks and channels	Visual encoding - analyze idiom structure as combination of marks and channels	Visual encoding - analyze idiom structure as combination of marks and channels	Visual encoding - analyze idiom structure as combination of marks and channels
	mark: line		

Idiom: streamgraph generaized stacked graph emphasizing horizo
.vs vertical items - data
data
.1 careg key atrib (movies)
$\cdot 1$ ordered key atribib time) -1 ordered key atrtib (imes) -1 I quant value attrib (counss)

- derived data

T quant atrifi (ayer ordering)
Choosing bar vs line charts

$$
\begin{aligned}
& \text { Choosing bar vs line chart } \\
& \text { - depends on type of key }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - depends on type of key } \\
& \text { attrib } \\
& \text {-bar charts if categorical }
\end{aligned}
$$

attrio charts if categorica

$$
\begin{aligned}
& \text {-line charts if ordered } \\
& \text { do not use line charts for }
\end{aligned}
$$ do not use line charts for categorical key attribs

-violates expressiveness principle - implication of rend so strong
that it overrides semantics! -"The mort mane semantics!
taller hestse is
is
Idiom: Indexed line charts

- data: 2 quant attribs
-1 key +1 value
- derived data: new quant value attrib -index
of original value task: show change over time - principle: normalized, not absolute
- scalability ${ }_{\text {- same as standard line chart }}^{\text {scability }}$
-same as standard line chart

Idiom: heatmap

- two keys, one value
- 2 categ atrribs (gene, experimental condition) 1 quant attrib (expression levels) marks: point
- Separate and align in $2 D$ martix
-indexeed by 2 categogrical atributes
-channels
- color by quant attrib

- task
- find clusters, outiers
-scalability
salability
IM items, 100 s of categ levels, ~ 10 quant atrib levels

Idiom: streamgraph
generalized stacked graph
emphasizing horizontal continuity - v s veritical items
 $-I$
-1 categ key atrib (movies)
-1 ordered key yatrib (time) -1 quant value atrrib (counts)
-derived data - derived data - geomerry: layers, where height en
counts - - calability tretrib (ayer ordering)
-- scandrods of time keys

one key, one valu

one key,
-data
-- 2 quant attribs
diom: dot / line chart

$\stackrel{-}{-2 \text { quant atribs }} \underset{- \text { mark: points }}{ }$
markk points
AND line connection marks between them
-channels $\begin{gathered}\text { aligned lenghs to express quant value } \\ \text {. }\end{gathered}$ - speparated and ordedered by byey atribib into

- -task - find trend
 one item
and
ability
- scalability
- hundreds of key levels, hundreds of value levels
Chart axes: avoid cropping y axis
- include 0 at bottom left or slope misleads
- some exceptions (arbitrary 0 , small change maters)

Idiom: Gantt charts
 - one key, two (related) values
 - data
 -data -1 categ attr - mark: line

$\underset{\substack{\text { - horiz position:start time } \\ \text { (tend from duration })}}{\text { and }}$
-task

- emphasize tempo
between items
-scalability
$\stackrel{\text { dozens of key levels [bars] }}{ }$ hundreds of value leves

in addition
in addition
-derived data
- derived data
$\cdot 2$ cluster hierarchies
-dendrogram
- parent-child relationships in tree with connection line marks

-heatmap

- marks (re-)ordered by cluster hierarchy traversal - masks (re-e)orderese by cluster hierarchy traversal quality of clusters found by automatic methods

Visualization Analysis \& Design
Tables (Ch 7) II

Tamara Munzner

Department of Computer Science
@tamaramunzner

Θ Axis Orientation

$\xrightarrow{\rightarrow \text { Radial }}$

Idioms: pie chart, coxcomb chart

 - task: part-to-whole judgements - line marks with length channel: ID length varies - separated \& ordered radially uniform widh

- direct analog to radial bar charts - data
\qquad
Pie charts: best practices
not so bad for two (or few) levels, for part-to-whole task

Idiom: glyphmaps

- rectilinear good for linear vs nonlinear trends

- radial good for cyclic patterns

 - evaluating periodicity
\square
Idioms: radial bar chart, star plot
Idiom: radar plo
"Radar graphs:Avoid them (99.9% of the time)"
-point marks, radial layout - connecting line marks
avoid unless data is cyclic
line mark, radial axes meet at central r

- bar chart
,
- accuracy
length not aligned with radial layouts
- less accurately perceived than rectilinear aligned
Coxcomb / nightingale rose / polar area chart
- invented by Florence Nightingale:
- invented by Florence Nightingale:
Diagram of the Causes of Mortality in the Army in the Eas

Pie charts: best practices
- not so bad for two (or few) levels, for part-to-whole task - dubious for several levels if details matter
ie charts: best practices
- not so bad for two (or few) levels, for part-to-whole task dubious for several levels if details matter

- terrible for many levels

\section*{Idioms: normalized stacked bar chart}

- task
- part-to-whole judgements
normalized stacked bar chart
- stacked bar chart, normalized to full vert height -single stacked bar equivalent to full pie - high information density: requires narrow rectangle pie chart
-information density: requires large circle

Idioms: parallel coordinates
- scatterplot limitation | - visual representaion with orthogonal axes |
| :--- | - can sheverenntyation with orthogonala axes

position channel \qquad
 Table

Criteria conflic

ost criteria NP-hard individually

- many criteria directly conflict with each other

Sotur 2004

Optimization-based layouts

- formulate layout problem as optimization problem
- convert criteria into weighted cost function
$-F($ layout $)=a^{*}$ [crossing counts] $+b^{*}[$ drawing space used]..+
- use known optimization techniques to find layout at minimal cost
- energy-based physics models
-force-directed placement
-spring embedders

Force-directed placement

- physics model
- nodes $=$ magnets repulse apart

algorithm

- place vertices in random locations
- while not equilibrium
- calculate force on vertex
- sum of
\# pairivis repulsion of all 1 odes
\#atraction bewwen connected

djacency matrix representation

Adjacency matrix representations

- derive adjacency matrix from network
- derive adjacency matrix from network
- original: network

Adjacency matrix

Adjacency matrix
 good for topology tasks
related to neiehborhooods
(node I-hop neighbors)

(node I-hop neighbors)
 Idiom: NodeTrix

\qquad

-derived: node ordering attribute (global computation)
considerations: node ordering crucial to avoid excessive clutter from edge crossings

- hybrid nodelink/matrix
- capture strengths of both

Structures visible in both

Node-link vs. matrix comparison

- node-link diagram strengths - topology understanding, path tracing - adjacency matrix strengths
- focus on edges racher than nodes - layout straightforward (reordering needed) - predictability, scalability
- some topology tasks train
- empirical study
- node-link best for small networks
- matrix best for large networks
- if assks dont invove path racaing!

Force-directed placement properties

- reasonable layout for small, sparse graphs
-clusters typically visible
- edge length uniformity
- weaknesses
-nondeterministic
-computationally expensive: $O\left(n^{\wedge} 3\right)$ for n nodes
- each step is $n^{2} 2$, takes \sim n cycles to reach equilbrium
- each step is $n \wedge$, takes $\sim n$ cycles to reach equilibrium
naive $F D$ doesn't scale well beyond $I K$ nodes
-iterative progress: engaging but distracting

-IK nodes, IM edges

Node-link trees

- Reingold-Tilford
-tidy drawings of trees
- exploit parentchild struct - exploit parentcchild structure
-allocate space: compact but without overlap
- rectilinear and radial variants

nice algorithm writeup
htte:|lbilmililorgipymogetrees

Spatial dati
-when?
-dataset contains spatial attributes and they have primary importance -central tasks revolve around understanding spatial relationships

- examples
- geographical/cartographic data
-sensor/simulation data -sensor/simulation data

Geographic Maps

| -sensor/simulation data |
| :--- | :--- |
| Idiom: choropleth map |
| - use given spatial data |
| - when central task is understanding spatial
 relationships |
| - data |
| - geographic geometry |
| - table with I quant atribute per region |
| - encoding |
| - position: |
| use given geometry for area mark boundaries |
| - color: |
| sequential segmented colormap |

Geographic Map

Interlocking marks shape coded area coded - position coded

Thematic maps
show spatial variability of attribute ("theme") - combine geographic / reference map with (simple, flat) tabular data -join together

- region: interlocking area marks (provinces, countries with outine shapes)
- also could have point marks sties, cocations with 2 D latlon coords) - region: categorical key atribute in
- major idioms
-choropleth
-symbol maps
- cartograms
dot density maps
Beware: Population maps trickin
- spurious correlations: most attributes
just show where people live
- consider when to normalize by
population density
-tied to underlyng population
but should use normalized values
-unemplyed people per 100 citizens, mean family
income

Beware: Population maps trickiness! spurious correlations: most attributes just show where people live consider when to normalize by population density

- encode raw data values
- tied o ounderly
- but shoutaion
should use normalized values
\bullet but should use normalized values
-unemployed people eer 100 citizens, n
unemployed people eper 100 citizens, mean family
income - general issue
-absolute counts vs relative/normalized data -failure to normalize is common error

Symbol maps with glyphs

Choropleth maps: Recommendations

Choropleth maps: Recommendations

- only use when central task is understanding spatial relationships
- show only one variable at a tim
- normalize when appropriate
- be careful when choosing colors \& bins
- best case: regions are roughly equal sized

Symbol map: Pros \& cons

- pros
-somewhat intuitive to read and understand
-mitigate problems with region size vs data salience
- marks ssybol size follows attribute value
- - lyphss symbol size can be uniform
- cons
possible occlusion / overlap
symbols could overlap each other
-symbols could occlude region boundaries
complex glyphs may require explanation / training

Chor

- easy to read and understand
-well established visualization (no learning curve)
-data is often collected and agreegated by geographical regions
- cons
-most effective visual variable used for geographic location
-visual salience depends on region size, not true importan
- large regions appear more important than small ones
- color palette choice has a huge influence on the result

Idiom: Contiguous cartogram
interlocking marks:
shape, area, and position coded
derive new interlocking marks

- based on combination of original interlocking - based on combination of original intel
marks and new quantitative attribute

algorithm to create new marks

-input: target size

- goal: shape as close to the original as possible
-requirement: maintain constraints
- relative position
-contiguous boundaries with their neighbours

diom: Symbol maps

- symbol is used to represent aggregated data (mark or glyph)

Idiom: Grid Cartogram

- uniform-sized shapes arranged in rectilinear grid - maintain approximate spatial position and arrangement

Manipulate	Navigate: Changing viewpoint/visibility - change viewpoint - changes which items are visible within view - camera metaphor - pan/translate/scroll - move up/down/sideways	Idiom: Scrollytelling - how: navigate page by scrolling (panning down) - pros: -familiar \& intuitive, from standard web browsing \qquad - linear (only up \& down) vs possible overload of click-based interface choices - cons: -full-screen mode may lack affordances - scrollijacking, no direct access -unexpected behaviour -continuous control for discrete steps [How to Scroll, Bostock](https://bost.ocks.org/mike/scroll/) https://eagereyes.org/blog/2016/the-scrollytelling-scourge	Navigate: Changing viewpoint/visibility - change viewpoint \oplus Navigate - changes which items are visible within view - camera metaphor - pan/translate/scroll - move up/down/sideways -rotate/spin - typically in 3D - enlarge/shrink world == move camera closer/further - geometric zoom: standard, like moving physical object	
Navigate: Unconstrained vs constrained - unconstrained navigation - easy to implement for designer - hard to control for user - easy to overshoot/undershoot - constrained navigation -typically uses animated transitions -trajectory automatically computed based on selection - just click; selection ends up framed nicely in final viewport Θ Navigate \rightarrow Item Reduction \rightarrow Zoom \square \qquad \rightarrow Pan/Translate $\langle\because\rangle$ \rightarrow Constrained	Idiom: Animated transition + constrained navigation - example: geographic map -simple zoom, only viewport changes, shapes preserved Zoom to Bounding Box [Zoom to Bounding Box] https://observablehq.com/@d3/zoom-to-bounding-box	Navigate: Reducing attributes - continuation of camera metaphor -slice - show only items matching specific value for given attribute: slicing plane - axis aligned, or arbitrary alignment -cut - show only items on far slide of plane from camera - project - change mathematics of image creation - orthographic - perspective - many others: Mercator, cabinet, ... [Interactive Visualization of Multimodal Volume Data for Neurosurgical Tumor Treatment. Rieder, Ritter, Raspe, and Peitgen	Interaction benefits - interaction pros - major advantage of computer-based vs paper-based visualization -flexible, powerful, intuitive - exploratory data analysis: change as you go during analysis process - fluid task switching: different visual encodings support different tasks - animated transitions provide excellent support - empirical evidence that animated transitions help people stay oriented	
Interaction limitations - interaction has a time cost - sometimes minor, sometimes significant -degenerates to human-powered search in worst case - remembering previous state imposes cognitive load - controls may take screen real estate - or invisible functionality may be difficult to discover (lack of affordances) - users may not interact as planned by designer -NYTimes logs show ~90\% don't interact beyond scrollytelling - Aisch, 2016	Visualization Analysis \& Design Interactive Views (Ch 11/12) II Tamara Munzner Department of Computer Science University of British Columbia @tamaramunzner	How to handle complexity: I previous strategy + 2 more	Multiple Views	
Facet \oplus Juxtapose \qquad	Facet	Juxtapose and coordinate views \rightarrow Share Encoding: Same/Different \rightarrow Linked Highlighting	Idiom: Linked highlighting - see how regions contiguous in one view are distributed within another -powerful and pervasive interaction idiom System: EDV	
Θ Partition \qquad +... ω^{*}	$\left[. \cdot{ }^{\circ}+\ldots \cdot \cdot \cdot\right.$	\rightarrow Share Data: All/Subset/None lılı...	- encoding: different - multiform - data: all shared	
Θ Superimpose		\rightarrow Share Navigation $\left.\ddot{<}_{. . .} \cdot\right\rangle\left\langle l_{1} \\|_{1}\right\rangle$	- all items shared - different attributes across the views - aka: brushing and linking [Visual Exploration of Large Structured Datasets. Wills. Visual Exploration of Large Structured Datasets.Wills. Proc. New Techniques and Trends in Statistics (NTTS), pp. 237-246. IOS Press, 1995.]	

Linked views: Directionality
unidirectional vs bidirectional link
-bidirectional almost always better!

Idiom: Small multiples

Idiom: Small multiples

- encoding: same
- ex: line charts
- data: none shared
-different slices of dataset
-items or attributes
-exs.stock prices for different
companies

Facet
\oplus Juxtapose

Θ Superimpose

Superimpose	
$\because \cdot$	\ldots.

"

Idiom: Overview-detail views

- ex: same (birds-eye map)
- data: subset shared
- viewpoint differences:
subset of data items
- navigation: shared
-bidirectional linking
- other difference
-(window size)

Juxtapose vs animate - animate: hard to follow if many scattered changes or
many frames -vs easy special cas
transitions
- juxtapose: easier to compare across small multiples
- dififerent conditions (color),
same gene (layout)

Partition into views

- how to divide data between views Θ Partition into Side-by-Side Views -split into regions by attributes - encodes association betw
using spatial proximity
-order of splits has maior implications
for what patterns are visible

System: Google Maps
Idiom: Overview-detail navigation
encoding: same or differen
data: subset shared
navigation: shared

- unidirectional linking
- unidirectional linking
- select in mall overriew,
change extent in large detail view

Idiom: Tooltips
popup information for selection

- hover or click
-specific case of detail view:
provide useful additional detail on demand
"matumanatus.
\square
provide useful additional detail on dema
-beware: does not support
beware: does not support overview!
- always consider if there's a way to visually - always consider if there's a way to visually
encode directly to provide overview - "If you make a rollover or tooltip, assume
nobody w will see it. fit's important, make it

whighcharts

Juxtapose views: tradeoffs

- juxtapose costs

display area

- 2 views side by side: each has only half the area of one view
 - juxtapose benefits
cognitive load: eyes vs memory
ower cognitive load: move eyes between 2 views.
higher cognitive load: compare single changing view to memory of previous state

Partitioning: Grouped vs small-multiple bars

- single bar chart with grouped bars
- split by yate into regions

Partitioning: Recursive subdivision System: HIVE	Partitioning: Recursive subdivision System: HIVE	Facet	Superimpose layers				
- switch order of splits -type then neighborhood - switch color -by price variation - type patterns - within specific type, which neighborhoods inconsistent	- different encoding for second-level regions -choropleth maps [Configuring Hierarchical Layouts to Address Research Questions. Slingsby, Dykes, and Wood. IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis 2009) 15:6 (2009), 977-984.]	Θ Juxtapose $\ldots \cdot$... Θ Partition \square \square	- layer: set of objects spread out over Θ Superimpose Layers region - each set is visually distinguishable group - extent: whole view - design choices - how many layers, how to distinguish? - encode with different, nonoverlapping channels - two layers achievable, three with careful design - small static set, or dynamic from many possible?				
Static visual layering - foreground layer: roads -hue, size distinguishing main from minor -high luminance contrast from background - background layer: regions -desaturated colors for water, parks, land areas - user can selectively focus attention	Idiom: Trellis plots - superimpose within same frame -color code by year - partitioning -split by site, rows are barley varieties - main-effects ordering - derive value of median for group - order rows within view by variety median - order views themselves by site median	Superimposing limits (static) - few layers, more lines - up to a few dozen lines -but not hundreds - superimpose vs juxtapose: empirical study - same size: all multiples, vs single superimposed - superimposed: local tasks - juxtaposed: global tasks, esp. for many charts \qquad	Dynamic visual layering - interactive, based on selection - one-hop neighbour highlighting https://mariandoerk.de/edgemaps/demo http://mbostock.github.io/d3/talk/201 \|			6/airports.htm	
	Visualization Analysis \& Design Reduce: Aggregation \& Filtering (Ch 13) Tamara Munzner Department of Computer Science University of British Columbia	How to handle complexity: 3 previous strategies	How to handle complexity: 3 previous strategies + I more				
	Reduce items and attributes - reduce/increase: inverses - filter - pro: straightforward and intuitive - to understand and compute - con: out of sight, out of mind - aggregation -pro: inform about whole set -con: difficult to avoid losing signal - not mutually exclusive - combine filter, aggregate -combine reduce, change, facet educing Items and Attributes Θ Filter \rightarrow Items \rightarrow \#\#\#\#\# \rightarrow Attributes Θ Aggregate \rightarrow Items \square \rightarrow Attributes \square	Filter - eliminate some elements - either items or attributes - according to what? - any possible function that partitions dataset into two sets - attribute values bigger/smaller than x - noise/signal - filters vs queries -query: start with nothing, add in elements -filters: start with everything, remove elements -best approach depends on dataset size Reducing Items and Attributes Θ Filter \rightarrow Items \rightarrow Attributes	Idiom: FilmFinder - dynamic queries/filters for items -tightly coupled interaction and visual encoding idioms, so user can immediately see results of action				

Idiom: cross fi

- coordinated views/controls combined
-all scented histogram bisliders update when any ranges change

Aggregate

- a group of
elements

Idiom: histogram
Idiom: scented widgets

- augmented widgets show information scent - better cues for information foraging: show whether
value in drilling down further vs looking elsewhere concise use of space: histogram on slider

 Nand
task: find distribution - data: table
- derived data
- new table: keys are bins, values are counts
bin size crucial
-pattern can change dramatically depending on discretiza
- opportunity for interaction: control bin size on the fly
\qquad
dom: scented widget
Idiom: scented widgets
- augmented widgets show information scent
- better cues for information foraing show whether
- better cues for information foraging: show wheether
value in drilling down further vs looking elsewhere - concise use of space: histogram on slider

Idiom: Continuous scatterplot

- data: table - derived data: table - key attribs x, y for pixels - quant attrib: overplot densit - dense space-filling 2D ma - color: sequential categorical hue ordered luminance color - scalability

Idiom: Hierarchical parallel coordinates

- dynamic item aggregation

- derived data: cluster hierarchy

- encoding:
- cluster band with variale transparency, line at mean, width by min/max values - color by proximity in hierachy

Θ Aggregate
\rightarrow Items

\rightarrow Atributes

Spatial aggregation

- MAUP: Modifiable Areal Unit Problem

-changing boundaries of cartographic regions can yield dramatically different results

-scale effects

Attribute aggregation: Dimensionality reduction

- attribute aggregation
- attribute aggregation
-derive low-dimensional target space from high-dimensional measured space $\underset{- \text { - derive low-dimensional target space from }}{\boldsymbol{-} \text { capture most of variance with minimal error }}$
- capture most of variance with minimal error
-use when you can't directly measure what you care about
- true dimensionality of dataset conjectured to be smaller than dimensionality of measurements - latent factors, hidden variables

Idiom: boxplot

Gerymandering: MAUP for political gain

Dynamic aggregation: Clustering

- clustering: classification of items into similar bins -based on similiarity measure
-based on similiarity measure
-hierarchical algorithms produce "similarity tree": cluster hierarchy
-hierarchical algorithms produce "similarity tree": cluster hierarchy
- cluster hierarchy: derived data used w/ many dynamic aggregation idioms - cluster more homogeneous than whole dataset

- static item aggregation
- task: find distribution
- task: find distribution
- data: table
- derived data
-5 . quant atrribs
- median central line
- 10 everand upper quartile: boxes
- $\begin{aligned} & \text { ower upper fences: Whiskers } \\ & \text {-values berond whinh ienens }\end{aligned}$

- scalability
- unlimited number of items!

Idiom: Dimensionality reduction for documents

Visualization Analysis \& Design

Rules of Thumb
Guidelines and considerations, not absolute rules -when to use 3 D ? when to use 2D? -when to use eyes instead of memory? -when does immersion help? -when to use overviews?
-how long is too long?
-which comes first. form or function?

Tamara Munzner

 Department of Computer ScienceUniversity of British Columbia @tamaramunzner

Depth vs power of the plane

- high-ranked spatial position channels: planar spatial position - not depth!

Position on common scale Position on unaligned scale	
Length (10 size)	---
Tittangle	1/=
Area (20 Size)	-••■
Depth (3D position)	$\stackrel{\bullet}{\bullet}$

Occlusion hides information

- occlusion
- interaction can resolve, but at cost of time and cognitive load

[Distorition Viewing Techniques for 30 Data. Carpendale et al. InovVis 1996.]
No unjustified 3D example:Time-series data - extruded curves: detailed comparisons impossible

Perspective distortion loses information

- perspective distortion
-interferes with all size channel encodings
-power of the plane is lost!
-

MVisulizing the Results of Multimedia Web Search
Engiges. Mukkerea, Hirato, ond H Hora. Infovis 96$]$

No unjustified 3D example:Transform for new data abstraction - derived data: cluster hierarchy

- juxtapose multiple views: calendar, superimposed 2D curves

Unjustified 3D all too common, in the news and elsewhere

Depth vs power of the plane
high-ranked spatial position channels: planar spatial position - not depth!

Magnitude Channels: Ordered Attributes	
Postion on common scale	
Position on unaligned scale	\because
Length (1) size)	-- -
Tittangle	1/2
Area (2D Size)	- . \quad ■
Depth (3D postion)	$\mapsto \cdot \longmapsto$

No unjustified 3D: Danger of depth

- we don't really live in 3D: we see in 2.05D
- acquire more info on image plane quickly from eye movements -acquire more info for depth slower, from head/body motion

Tilted text isn't legible

- text legibility

- constrained navigation
steps through crar designed viewpoints

WEBPATH-a three dimensional Web history. Frecon and Smith. Proc. Iforovis 1999]

Overview first, zoom and filter, details on demand

- influential mantra from Shneiderman

[The Eyes Have ItA A Task by Data Type Taxonomy for Information Visulizations
Shneiderman. Proc. IEEEVVisual Languages, pp. 336-343, 1996.] Shneiderman. Proc. IEEE Visual Languages, pp. 336-343, 1996.]

Rule of thumb: Responsiveness is required

- visual feedback: three rough categories
-0.1 seconds: perceptual processing
- subsecond response for mouseover highlighting - ballistic motion
second: immediate response
1sotresponse aterer mousedrk, button press - Fitits' Law limits on motor contra Scalability considerations
-highlight selection without complete redraw of view (grephics frontouffer) show hourglass for multi-second operations (check for cancel/undo) -show progress bar for long operations (process in background thread)

Rule of thumb: Responsiveness is required

ual feedback: three rough categor

-0.1 seconds: perceptual processing

- subsecond response for mouseover highlighting - ballistic motion
- fast response after mousecick, button press - Fitts' Law limits on motor control
- bounded response after dialog box - mental model of hearyweight operation (file load)

Rule of thumb: Responsiveness is required

- visual feedback: three rough categories

Rule of thumb: Responsiveness is required

- visual feedback: three rough categorie
-0.1 seconds: perceptual processing
- subsecond response for mouseover highlighting - ballistic motion
- fast response after mousecick, button press - Fitts' Law limits on motor control - 10 seconds: brief tasks
- bounded response after dialog box - mental model of hearyweight operation (file load) - scalability considerations
- consider whether network data requires 2 D spatial layout
- especially if reading text is central to task!
arranging as network means lower ins
and harder label lookup compared to text lists - benefits outweigh costs when topological ext important for task
be especially careful for search results, document
be especialy carefulf or
collections, ontologies

Eyes beat memory
apler extal cognition vs. internal memory
easy to compare by moving eyes between side-by-side views implications for animatio
-great for choreographed storytelling
-great for transitions between two states

- poor for many states with changes everywhere consider small multiples instead
$\left.\underset{\text { show time with time }}{\substack{\text { literal } \\ \text { animation }}} \begin{array}{c}\text { abstract } \\ \text { small multiples }\end{array}\right)$

Rule of thumb: Responsiveness is required

visual feedback: three rough categories
-0.1 seconds: perceptual processing
subsecond response for mouseover highlighting - ballistic motion

ule of thumb: Responsiveness is required

visul feedback: three rough

-0.1 seconds: perceptual processing

- subsecond response for mouseover highlighting - ballistic motion
-1 second: immediate response
- fast response after mousecick, button press - Fitts' Law limits on motor control

10 seconds: brief tasks

- bounded response after dialog box - mental model of hearyweight operation (file load)
scalability consideration
- highlight selection without complete redraw of view (graphics frontbuffer)

Rule of thumb: Responsiveness is required

- visual feedback: three rough categories
-0.1 seconds: perceptual processing
$\quad-$ subsecond responste for mousseover highlighting - ballistic motion
I second: immediate response
- fast response after mousecick, button press - Fitts' Law limits on motor control 10 seconds: brief tasks
- bounded response a fter dialog box - mental model of hearyweight operation (file load) y considerations
-highlight selection without complete redraw of view (graphics frontbuffer) show hourgass for mutti-second operations (check for cancel/undo) rendering speed when item count is large (guaranteed frame rate)

Resolution beats immersion
immersion typically not helpful for abstract daa
do not ned sense of presence or stereoscopic 30

- desktop also better for workflow integration
- resolution much more important:
pixels are the scarcest resource
- first wave: virtual reality for abstract data difficult to justify
- second wave: AR/MR (augmented/mixed reality) has more promise
 and

Rule of thumb: Responsiveness is required

- visual feedback: three rough categories
-0.1 seconds: perceptual processing
- subsecond response for mouseover highlighting - ballistic motio - fast response after mouseclick, button presss - Fitts' Law limits on motor control

Rule of thumb: Responsiveness is required

- visual feedback: three rough categories
-0.1 seconds: perceptual processing
- I second: immediate response her highighting- ballistic motion
- fass response after mousecick, button press - Fitts' Law limits on motor control - 10 seconds: brief tasks
- bounded response after dialog box - mental model of hearyweight operation (file load - scalability considerations
- highlight selection without complete redraw of view (graphics frontbuffer)
-show hourglass for multi-second operations (check for cancel/undo)

Function first, form next

- dangerous to start with aesthetics - usually impossible to add function retroactively - start with focus on functionality
-possible to improve aesthetics later on, as refinement
-if no expertise in-house, find good graphic designer to work with
- aesthetics do matter! another level of function
- visual hierarchy, lignment, flow
- Gestalt princicipes in action

