Visualization Design Methods

Tamara Munzner Department of Computer Science University of British Columbia

Design@Large Series, UCSD Design Lab January 24 2017, San Diego CA

http://www.cs.ubc.ca/~tmm/talks.html#ucsd17

@tamaramunzner

Visualization (vis) defined & motivated

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

- human in the loop needs the details
- -doesn't know exactly what questions to ask in advance
- -longterm exploratory analysis
- -presentation of known results
- -stepping stone towards automation: refining, trustbuilding
- external representation: perception vs cognition
- intended task, measurable definitions of effectiveness

Visualization Analysis and Design, Chapter 1.

Munzner, AK Peters Visualization Series, CRC Press, 2014.

Design Study Methodology

Reflections from the Trenches and from the Stacks

A Nested Model for Visualization Design and Validation
Munzner. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 09), 15(6):921-928, 2009

Tamara Munzner

Michael Sedlmain

Tamara Munzner

iterative

@tamaramunzner

Design Study Methodology: Reflections from the Trenches and from the Stacks

Sedlmair, Meyer, Munzner. IEEE Trans. Visualization and Computer Graphics 18(12): 2431-2440, 2012 (Proc. InfoVis 2012).

@tamaramunzne

₩ Algorithm

Analysis framework: Four levels, three questions

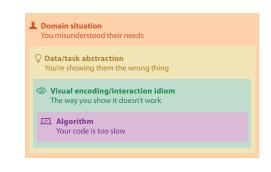
- domain situation
- -who are the target users?
- abstraction
- -translate from specifics of domain to vocabulary of vis
 - what is shown? data abstraction
 - often don't just draw what you're given: transform to new form
 - why is the user looking at it? task abstraction

Methodology for problem-driven work

idiom

definitions

- -how is it shown?
- visual encoding idiom: how to draw
- interaction idiom: how to manipulate
- algorithm
- -efficient computation


• 9-stage framework

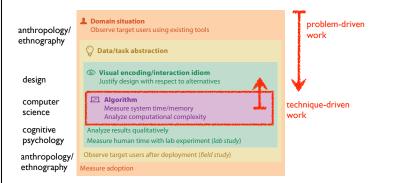
Brehmer and Munzner. IEEETVCG 19(12):2376-2385, 2013 (Proc. InfoVis 2013).]

Why is validation difficult?

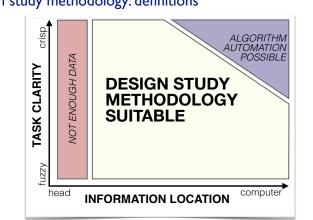
9-stage framework

· different ways to get it wrong at each level

[A Nested Model of Visualization Design and Validation. Munzner: IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]


discover

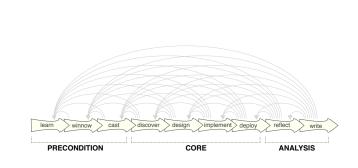
implement


design

Lessons learned from the trenches: 21 between us

Validation solution: use methods from appropriate fields at each level · avoid mismatches!

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]



Design study methodology: definitions

9 stage framework

DESIGN STUDY METHODOLOGY SUITABLE

http://www.cs.ubc.ca/labs/imager/tr/2012/dsm/

• 32 pitfalls & how to avoid them

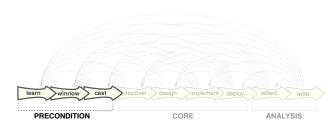
comparison to related methodologies

9-stage framework

learn winnow cast

> general learn winnow winnow winnow winnow winnow

winnow winnow


abstraction

idiom

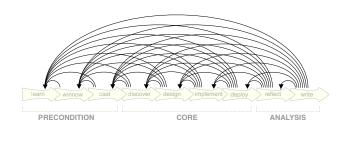
Munzner. IEEETVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

abstraction What?

algorithm

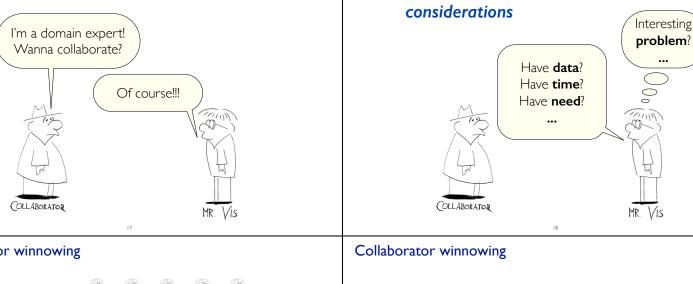

Design study methodology: 32 pitfalls

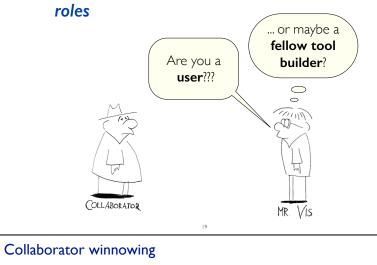
• and how to avoid them


PF-1 premature advance: jumping forward over stages PF-2 premature start: insufficient knowledge of vis literature PF-3 premature commitment: collaboration with wrong people PF-4 no real data available (yet) PF-5 insufficient time available from potential collaborators PF-6 no need for visualization: problem can be automated PF-7 researcher expertise does not match domain problem PF-8 no need for research: engineering vs. research project PF-9 no need for change: existing tools are good enough		
PF-3 premature commitment: collaboration with wrong people PF-4 no real data available (yet) PF-5 insufficient time available from potential collaborators PF-6 no need for visualization: problem can be automated PF-7 researcher expertise does not match domain problem PF-8 no need for research: engineering vs. research project	PF-1	premature advance: jumping forward over stages
PF-4 no real data available (yet) PF-5 insufficient time available from potential collaborators PF-6 no need for visualization: problem can be automated PF-7 researcher expertise does not match domain problem PF-8 no need for research: engineering vs. research project	PF-2	
PF-5 insufficient time available from potential collaborators PF-6 no need for visualization: problem can be automated PF-7 researcher expertise does not match domain problem PF-8 no need for research: engineering vs. research project	PF-3	premature commitment: collaboration with wrong people
PF-6 no need for visualization: problem can be automated PF-7 researcher expertise does not match domain problem PF-8 no need for research: engineering vs. research project	PF-4	nó reál data available (yet)
PF-7 researcher expertise does not match domain problem PF-8 no need for research: engineering vs. research project	PF-5	insufficient time available from potential collaborators
PF-8 no need for research: engineering vs. research project	PF-6	no need for visualization: problem can be automated
	PF-7	researcher expertise does not match domain problem
PF-9 no need for change: existing tools are good enough	PF-8	no need for research: engineering vs. research project
•	PF-9	no need for change: existing tools are good enough
		•

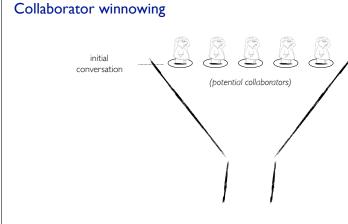
9-stage framework

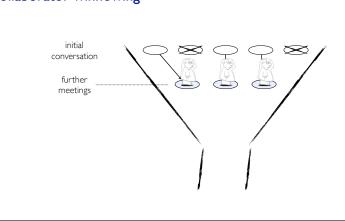
• guidelines: confirm, refine, reject, propose

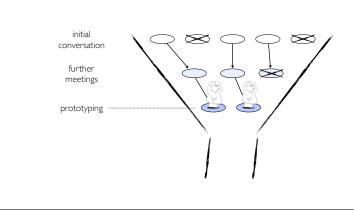


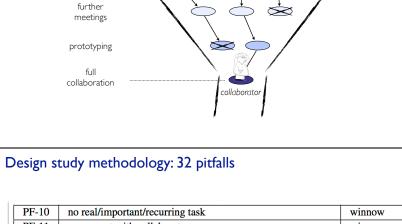

9-stage framework

reflect write

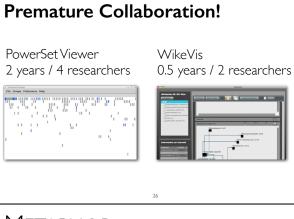

deploy PRECONDITION ANALYSIS



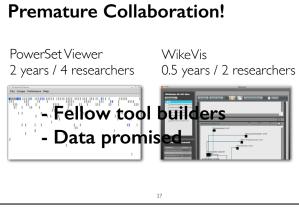


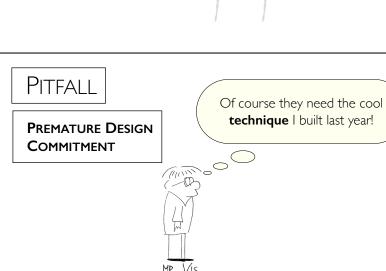

conversation

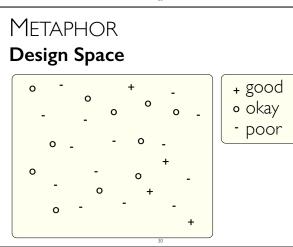


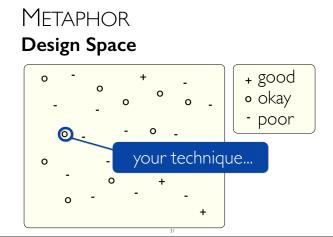


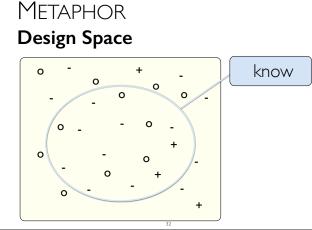
EXAMPLE FROM THE TRENCHES

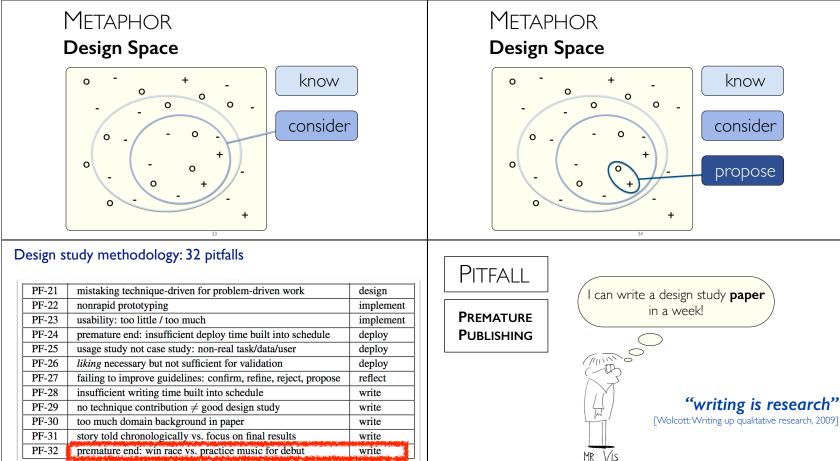



Collaborator winnowing




EXAMPLE FROM THE TRENCHES




PF-10	no real/important/recurring task	winnow
PF-11	no rapport with collaborators	winnow
PF-12	not identifying front line analyst and gatekeeper before start	cast
PF-13	assuming every project will have the same role distribution	cast
PF-14	mistaking fellow tool builders for real end users	cast
PF-15	ignoring practices that currently work well	discover
PF-16	expecting just talking or fly on wall to work	discover
PF-17	experts focusing on visualization design vs. domain problem	discover
PF-18	learning their problems/language: too little / too much	discover
PF-19	abstraction: too little	design
PF-20	premature design commitment: consideration space too small	design
	Metaphor	

problem-

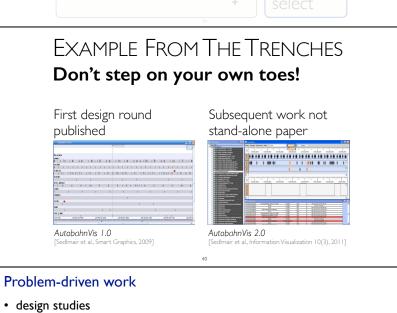
driven work

0

know

consider

propose


select

technique-

driven work

METAPHOR

Design Space

Think

broad!

+ good

METAPHOR

Design Space

- in collaboration with target users

· intensive requirements analysis

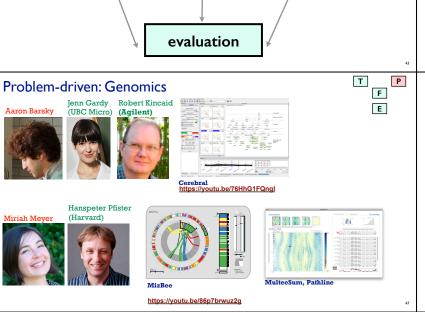
- typical evaluation: case studies, field studies

· real data, real tasks

- iterative refinement

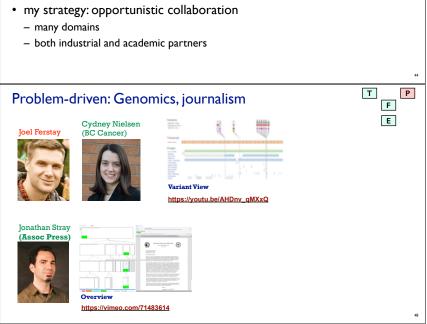
· deploy tools/systems

Reflections from the stacks: Wholesale adoption inappropriate


 action research -aligned

> intervention as goal · transferability not reproducibility

-opposition


- researcher lead not facilitate design
- orthogonal to vis concerns: participants as writers, adversarial to status quo, postmodernity

theoretical

foundations

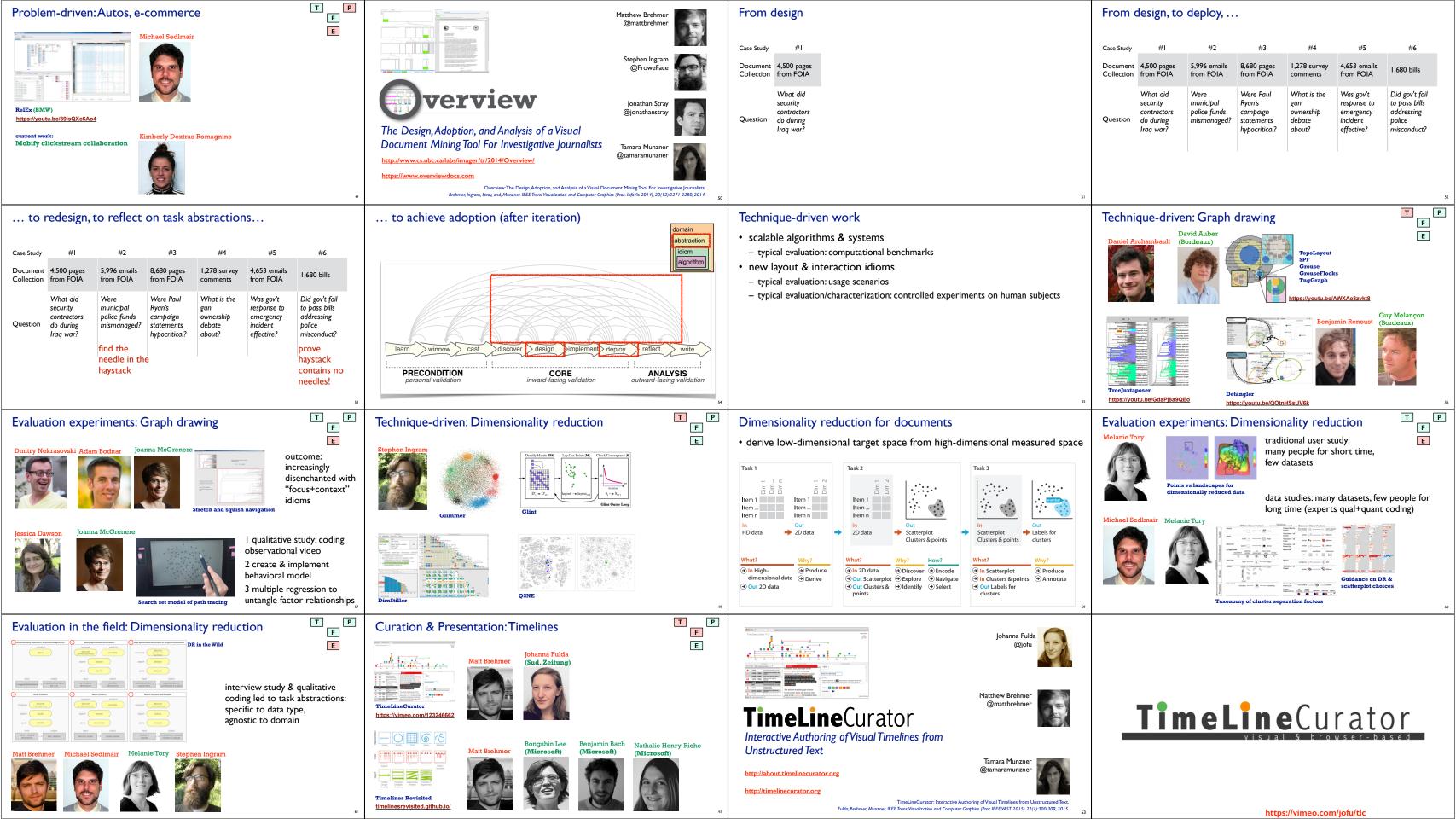
F

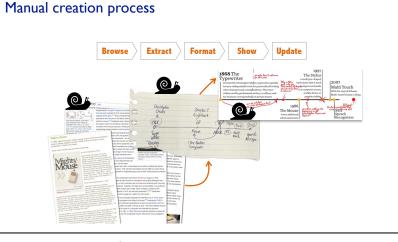
methods reflection: to target users https://voutu.be/ld0c3H0VSkv

staged model of access

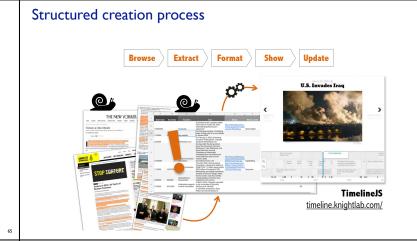
E

https://youtu.be/h0kHoS4VYmk

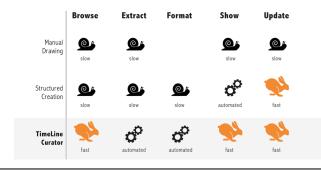




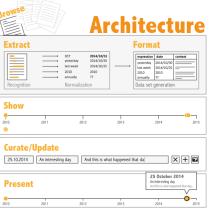
know


consider

propose



Yest 10 10 10 10 10



Timeline authoring model • time required for each task

The general case for curation

- build for human in the loop as continuing need
- -automatic processing to
- accelerate not replace
- -assume computational results good but not perfect
- for the indefinite future!
- -visual feedback to accelerate

The importance of being brisk

- sexy use case: eureka moment
- -success: enable what was impossible before
- -vis tools for new insights & discoveries
- workhorse use case: workflow speedup
- -success: vis tools accelerate your prior workflow • sometimes enables the previously infeasible

TLC use cases

- -started with speedup use case, for presentation · make this doc into a timeline now!
- -two other use cases nudge towards exploration
- comparison between multiple timelines
- speculative browsing

TimeLineCurator: Speculative Browsing

speculative browsing

https://vimeo.com/jofu/tlc

Theoretical foundations

handling contexts where common

More information

P E

- theoretical foundations: book (+ free tutorial/course lecture slides)
- -20% promo code for book+ebook combo: HVN 17
- http://www.crcpress.com/product/isbn/9781466508910
- this talk http://www.cs.ubc.ca/~tmm/talks.html#ucsd17
- papers, videos, software, talks, courses http://www.cs.ubc.ca/group/infovis http://www.cs.ubc.ca/~tmm

@tamaramunzner

Munzner. A K Peters Visualization Series, CRC Press, Visualization Series, 2014.