Scalable Visualization with Accordion Drawing

Tamara Munzner
University of British Columbia
Department of Computer Science

joint work with James Slack, Kristian Hildebrand, Katherine St. John
Problem: Comparing Evolutionary Trees

Common Dataset Size Today

Future Goal: 10M Node Tree of Life

You are here

Animals

Plants

Fungi

Protists

Paper Comparison: Multiple Trees

focus

context
TreeJuxtaposer

- side by side comparison of evolutionary trees
 - video, software downloadable from http://olduvai.sf.net/tj

TJ Contributions

- first interactive tree comparison system
 - automatic structural difference computation

- scalable to large datasets
 - 250,000 to 500,000 total nodes: original
 - up to 4,000,000 nodes: later, with PRISAD
 - all preprocessing subquadratic
 - all realtime rendering sublinear
 - items to render >> number of available pixels

- scalable to large displays (4000 x 2000)

- introduced accordion drawing
Accordion Drawing

- rubber-sheet navigation
 - stretch out part of surface, the rest squishes
 - borders nailed down
 - Focus+Context technique
 - integrated overview, details
 - old idea
 - [Sarkar et al 93], [Robertson et al 91]

- guaranteed visibility
 - marks always visible
 - important for scalability
 - new idea
 - [Munzner et al 03]
SequenceJuxtaposer

- side by side comparison of multiple aligned gene sequences
- would accordion drawing help?
 - multiple focus areas, smooth transitions, guaranteed visible landmarks
- now commonly browsed with web apps: zoom/pan with jumps, just one region
- video/software downloadable from http://olduvai.sf.net/sj

- scalability (later, with PRISAD)
 - 44 species * 17K nucleotides = 770K items
 - 6400 species * 6400 nucleotides = 40M items

What's Hard?

- **Tree Diff**
 - Find best corresponding nodes between trees
 - Algorithm complexity - preprocessing: $O(n \log^2 n)$. Per-frame: constant

- **Guaranteed Visibility**
 - Landmarks don't vanish

- **Rendering**
 - For each frame, partition into visible regions, draw something useful
 - Provide guaranteed visibility of landmarks
 - Algorithm complexity depends on screen size, not dataset size

- **Navigation**
 - Have: (Objects drawn each frame) $<<$ (Total dataset objects)
 - Want: (Updates for navigation) $<<$ (Total dataset objects)
 - Algorithm complexity logarithmic in dataset size
Tree Diff

T_1

T_2

$L(m) = \{E,F\}$

$L(n) = \{D,E,F\}$

$$S(m,n) = \frac{|L(m) \cap L(n)|}{|L(m) \cup L(n)|} = \frac{|\{E,F\}|}{|\{D,E,F\}|} = \frac{2}{3}$$
Best Corresponding Node

\[BCN(m) = \arg\max_{v \in T_2} (S(m, v)) \]

- computable in \(O(n \log^2 n) \)
- linked highlighting
Marking Structural Differences

- Nodes for which $S(v, \text{BCN}(v)) \neq 1$
 - Matches intuition

Guaranteed Visibility

- marks are always visible
 - regions of interest shown with color highlights
 - search results, structural differences, user specified
- easy with small datasets
Guaranteed Visibility Challenges

- hard with larger datasets
- reasons a mark could be invisible
Guaranteed Visibility Challenges

- hard with larger datasets
- reasons a mark could be invisible
 - outside the window
 - AD solution: constrained navigation
Guaranteed Visibility Challenges

- hard with larger datasets
- reasons a mark could be invisible
 - outside the window
 - AD solution: constrained navigation
 - underneath other marks
 - AD solution: avoid 3D
Guaranteed Visibility Challenges

- hard with larger datasets
- reasons a mark could be invisible
 - outside the window
 - AD solution: constrained navigation
 - underneath other marks
 - AD solution: avoid 3D
 - smaller than a pixel
 - AD solution: smart culling
Guaranteed Visibility: Small Items

- Naïve culling may not draw all marked items

Guaranteed visibility of marks

No guaranteed visibility
Guaranteed Visibility: Small Items

- Naïve culling may not draw all marked items
Guaranteed Visibility Rationale

- relief from exhaustive exploration
 - missed marks lead to false conclusions
 - hard to determine completion
 - tedious, error-prone

- compelling reason for Focus+Context
 - controversy: does distortion help or hurt?
 - strong rationale for comparison

- infrastructure needed for efficient computation
Rending Complexity

- Reduce drawing complexity with sneaky culling
 - For each frame: draw representative visible subset, not entire dataset
 - (Total number of drawn objects per frame) << (Total dataset items)
 - In tree dataset with 600,000 leaves, draw only 1000 leaves
 - In sequence datasets, aggregate dense regions in software

1000 leaves visible

Dense, culled regions

PRISAD Architecture

world-space discretization
• preprocessing
 • initializing data structures
 • placing geometry

screen-space rendering
• frame updating
 • analyzing navigation state
 • drawing geometry
Stretch and Squish Navigation

- User selects any region to grow or shrink
 - Everything else shrinks or grows, accordingly
- Goal: handle millions of items, landmarks always stay visible

Growing a region

Successive Navigations Preserve Visual History
Implementing Stretch and Squish Navigation

- Simple to use
- Underlying infrastructure is complex to implement
 - Standard graphics pipeline has a single, monolithic transformation
 - Fast 4x4 matrix multiplication
 - Stretch and squish cannot be implemented using this pipeline
Navigation Algorithm

- Flow of our navigation algorithm:

```
moveSplitLines
resize
partition
interpolate
getRatio
```

Initialize
Recurse
Recurse
Recurse
Navigation Algorithm Complexity

- Logarithmic complexity: \(|Q| \approx |K| \log |N| << |N|
 - Q: Lines needing ratio updates
 - K: Lines to move
 - N: All lines
- Many positions change, but few ratios require updates
 - Moving 2 grid lines only requires changing ratios for 8 split lines
 - Subtrees not affected will conserve their internal ratios

- Speed: under 1 millisecond for \(|N| = 2,000,000\) lines
Lots More Information

- download software: http://olduvai.sf.net
 - TreeJuxtaposer, SequenceJuxtaposer

- many papers, talks, videos: http://www.cs.ubc.ca/~tmm
 - TreeJuxtaposer: Scalable Tree Comparison using Focus+Context with Guaranteed Visibility. Tamara Munzner, François Guimbretière, Serdar Tasiran, Li Zhang, and Yunhong Zhou. SIGGRAPH 2003, pp 453--462