Characterization of Information Visualization Systems

Tamara Munzner

Department of Computer Science University of British Columbia

Conf. on Quantification in Visual Computing

Stuttgart, Germany 9 Oct 2018

www.cs.ubc.ca/~tmm/talks.html#stuttgart18

@tamaramunzner

THE UNIVERSITY OF BRITISH COLUMBIA

Quantification and visualization: Challenges

- When to use what methods for evaluating visualization designs? -Formalism: Nested model
- What role can qualitative methods play in developing quantitative metrics? • How can we evaluate quantitative metrics beyond significance testing? -In-depth case study: Search sets for path tracing in node-link graphs

When to use what methods?

A Nested Model

for Visualization Design and Validation

http://www.cs.ubc.ca/labs/imager/tr/2009/NestedModel

A Nested Model for Visualization Design and Validation. Munzner. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 09), 15(6):921-928, 2009.

on	
raction	
oding/interaction idiom	
hm	

How to evaluate a visualization: So many methods, how to pick?

- Computational benchmarks?
 - -quant: system performance, memory
- User study in lab setting?
 - -quant: (human) time and error rates, preferences
 - -qual: behavior/strategy observations
- Field study of deployed system?
 - -quant: usage logs
 - -qual: interviews with users, case studies, observations
- Analysis of results?
 - -quant: metrics computed on result images
 - -qual: consider what structure is visible in result images
- Justification of choices?
 - -qual: perceptual principles, best practices

Nested model: Four levels of visualization design

• domain situation

- -who are the target users?
- abstraction
 - -translate from specifics of domain to vocabulary of visualization
 - what is shown? data abstraction
 - why is the user looking at it? **task** abstraction
- idiom
 - -**how** is it shown?
 - visual encoding idiom: how to draw
 - **interaction** idiom: how to manipulate
- algorithm

[A Multi-Level Typology of Abstract Visualization Tasks Brehmer and Munzner. IEEETVCG 19(12):2376-2385, 2013 (Proc. InfoVis 2013).]

– efficient computation

[A Nested Model of Visualization Design and Validation. Munzner. IEEETVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

Different threats to validity at each level

• cascading effects downstream

Domain situation You misunderstood their needs

Data/task abstraction
You're showing them the wrong thing

Wisual encoding/interaction idiom The way you show it doesn't work

Algorithm Your code is too slow

Interdisciplinary: need methods from different fields at each level

• mix of qual and quant approaches (typically)

anthropology/ ethnography	Domain situation Observe target users using existing tools	qual
	Data/task abstraction	
design	Visual encoding/interaction idiom Justify design with respect to alternatives	qual
computer science	Algorithm Measure system time/memory Analyze computational complexity	quant
psychology	Analyze results qualitatively Measure human time with lab experiment (<i>lab stud</i>	qual y) quant
anthropology/ ethnography	Observe target users after deployment (field study)	qual
	Measure adoption	quant

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

work

Mismatches: Common problem

Domain situation

Observe target users using existing tools

Data/task abstraction

Wisual encoding/interaction idiom Justify design with respect to alternatives

Algorithm

Measure system time/memory Analyze computational complexity

Analyze results qualitatively

Measure human time with lab experiment (*lab study*)

Observe target users after deployment (*field study*)

Measure adoption

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

benchmarks can't confirm design

lab studies can't confirm task abstraction

Analysis examples: Single paper includes only subset of methods

MatrixExplorer. Henry and Fekete. InfoVis 2006.

observe and interview target users

justify encoding/interaction design

measure system time/memory

qualitative result image analysis

LiveRAC. McLachlan, Munzner, Koutsofios, and North. CHI 2008.

observe and interview target users

justify encoding/interaction design

qualitative result image analysis

field study, document deployed usage

An energy model for visual graph clustering. (LinLog) Noack. Graph Drawing 2003

qualitative/quantitative image analysis

Effectiveness of animation in trend visualization. Robertson et al. InfoVis 2008.

lab study, measure time/errors for operation

Interactive visualization of genealogical graphs.

McGuffin and Balakrishnan. InfoVis 2005.

justify encoding/interaction design

qualitative result image analysis test on target users, get utility anecdotes

Flow map layout. Phan et al. InfoVis 2005.

justify encoding/interaction design computational complexity analysis measure system time/memory qualitative result image analysis

Role of quant methods in qual metrics? How to eval quant metrics?

A search-set model of path tracing in graphs

joint work with:

Jessica Q. Dawson, Joanna McGrenere

http://www.cs.ubc.ca/labs/imager/tr/2014/SearchSet

A search-set model of path tracing in graphs. Dawson, Munzner, McGrenere. Information Visualization, 14(4):308-338 2015.

Jessica Dawson

Joanna McGrenere

Path tracing in node-link graphs

- widely studied abstract task in previous work [Ghoniem et al 2002, Comparison of the Readability of Graphs Using Node-Link and Matrix-Based Representations] [Lee et al 2006, Task Taxonomy for Graph Visualization]
- common concrete task in real-world contexts
 - -movie domain:
 - How much distance between me and Kevin Bacon?
 - epidemiology domain: How many potential disease transmission paths between two people?

Human behavior & graph readability

- previous work observing human behaviour when interacting with graphs
 - -identify new metrics [van Ham & Rogowitz, 2008] [Dwyer et al., 2009] [Purchase et al., 2012]
 - understand how metrics operate through eye tracking [Körner, 2004] [Huang, Eades, Hong 2009] [Huang, 2013]
- one eye tracking study led to identification of a path tracing behavior: geodesic tendency

people look along straight line towards target [Huang, Eades, and Hong. 2009

A Graph Reading Behavior: Geodesic-Path Tendency]

I. First try closest to geodesic:

ΑB

I. A B C DDoesn't pan out, try again

2. Next try, diverge further from geodesic:

ΑE

2. AEFG

Success!

Set of likely paths searched: I. A B C D

2. AEFG

But our early piloting showed geodesic tendency only part of story...

Can layout quality provide an answer?

- layout quality in graph drawing judged with quantitative readability metrics:
 - -minimize edge-edge crossings, minimize total edge lengths, maximize angular resolution of edges at nodes, ...
- early algorithmic work based on metrics easy to compute -typically used in optimization context
 - -derived through introspection, assumed to be appropriate
- subsequent empirical work investigated how metrics impact graph readability for humans
 - -controlled experiments in lab setting [Purchase et al, 1995] [Purchase, 1997] [Purchase, 2002] [Körner, 2004] [Huang et al, 2005] [van Ham & Rogowitz, 2008] [Dwyer et al, 2009] [Huang, 2011] [Huang & Huang, 2011] [Körner, 2011] [Purchase et al, 2012] ...
 - -despite mixed findings, edge-edge crossings often considered as most important

21

- poorly understood: when is one path harder to follow than another?
- metrics typically used and evaluated globally

- poorly understood: when is one path harder to follow than another?
- metrics typically used and evaluated globally

- poorly understood: when is one path harder to follow than another?
- metrics typically used and evaluated globally

local edge-edge crossings = lots

- poorly understood: when is one path harder to follow than another?
- metrics typically used and evaluated globally

- poorly understood: when is one path harder to follow than another?
- metrics typically used and evaluated globally

global edge-edge crossings = lots

local edge-edge crossings = 2

- poorly understood: when is one path harder to follow than another?
- metrics typically used and evaluated globally
- finding: metrics along local solution path were much better predictors of difficulty [Ware, Purchase, Colpoys, McGill 2002. Cognitive Measurements of Graph Aesthetics]

Our "Goldilocks" observation

- global computation often takes too much into account
- but computing only along solution path may take too little into account! -overly local: does not account for everything relevant to task
- what would be just right?
 - -measure metrics on the full set of paths a user searches while completing a task!
- we identified novel goal
 - -predict set of paths that a user is likely to search while path tracing: search set
 - -would be good for
 - designing new interaction techniques & automatic graph layout algorithms
 - characterizing how users read graphs
 - improving measurement of metrics that affect graph readability

Multi-stage project

- introduce concept of the search set
- observational study:
 - -quantitative data collection
 - -qualitative analysis: open coding observational video of path tracing on "training" data
 - result: detailed characterization of path tracing behaviours
- model development: a predictive model of a search set
 - -algorithmic implementation
 - -quantitative assessment (preliminary)
- quantitative study:
 - -use search set to measure metrics that affect graph readability
 - -quantitative assessment: multiple regression analysis on (reserved) test data

The search set concept: Research questions

- (QI) can we identify distinct path tracing behaviours?
- (Q2) how common are these behaviours?
- (Q3) can we predict a search set based on these behaviours?
- (Q4) how much improvement from measuring metrics on search set?

Search Set Case Study: Qualitative Study

Observational user study

- 12 participants
- interface: graphs displayed on Cintig tablet
- primary task: find shortest path between red and blue nodes
- secondary task: trace progress: hover nodes with tablet pen
- I44 trials, split into two sessions (~I.5 hours each) - I unique graph shown per trial
- one shortest path in each graph
- two phases: I) find then 2) demonstrate solution path

Observational user study

- primary quantitative collected data
 - -Sequences of node hovers along paths for each trial
 - -Response time to complete trial
 - -Error rate (correct/incorrect solution path)
- analysis approach: split into three parts
 - -qualitative analysis of path tracing behaviors
 - for "training" data
 - -developing a predictive search set model and algorithmically instantiating it
 - -multiple regression analysis comparing metrics with/without search set
 - on reserved test data

y instantiating it ut search set

Qualitative analysis: Method

Manually coded paths because...

... participants often followed **apparent** paths

Qualitative analysis: Method

Manually coded paths because...

... some nodes were just in the way

41

Qualitative analysis: Method

- training set of 24 study graphs analyzed
 - -reserved other 120 graphs as validation set
 - 12 participant trials per graph
 - -for a total of 288 trials coded
- one investigator performed this coding solo

-with some automatic support via visualization interface

42

Visualization interface for qualitative coding

Visualization interface for qualitative coding

• Investigator looked at sequences of hovers ...

Visualization interface for qualitative coding

• And created textual descriptions of full paths

Qualitative analysis

- many path dimensions recorded
 - -anchor nodes where paths starts
 - -target nodes that paths go towards
 - -is a hop the closest to geodesic?
- also coded other interesting phenomenon
 - -jumps between nodes
 - -checks of node-edge crossings

— . . .

- • • •

46

Qualitative analysis: Key results

- It is possible to identify distinct path tracing behaviours (QI)? Yes -investigator classified 96% of data examined with at least one code
- Many common path tracing behaviours emerged from coding (Q2) -use of both topological and apparent paths
 - -repeated exploration of paths
 - -when participants stop following paths
 - -choice of nodes to search out from
 - -interactions of geodesic tendency with continuity
 - -prevalence of the geodesic tendency
 - -likely directions for the first hop in a path

Qualitative analysis: Key results

- It is possible to identify distinct path tracing behaviours (QI)? Yes -investigator classified 96% of data examined with at least one code
- Many common path tracing behaviours emerged from coding (Q2) -use of both topological and apparent paths
 - -repeated exploration of paths
 - -when participants stop following paths
 - -choice of nodes to search out from
 - -interactions of geodesic tendency with continuity
 - -prevalence of the geodesic tendency
 - -likely directions for the first hop in a path

Selected behaviors: Prevalence of geodesic tendency

- participants often followed closest to geodesic branches
 - -for all hops in a path, 40% of the time
 - -for all but first or last hop, additional 26% of the time
- participants often aware of this behaviour
 - -"the [closest to geodesic] was more natural, it was harder to force myself to look away" [P6]

Selected behaviors: Likelihood of first hop directions

• We found we could organize the direction of first hop into groups of similar likelihoods

Search Set Case Study: **Predictive Model**

From qualitative results to predictive model

- to addresses third question: (Q3) can we predict a search set based on these behaviours?
- designed a 3-step, predictive model based on the characterized behaviours
 - -input: a connected network with a unique solution between start/end nodes
 - -output: ordered batches of paths that a user is likely to search
 - all paths in one batch similarly likely

Generate batch of likely first-hop candidates

- Starting with directly towards

Generate batch of likely first-hop candidates

- Starting with directly towards

From each candidate, follow geodesic shortest branches

- Save path at each hop

From each candidate, follow geodesic shortest branches

- Save path at each hop

From each candidate, follow geodesic shortest branches

- Save path at each hop
- Go along path until stopping condition met

From each candidate, follow geodesic shortest branches

- Save path at each hop
- Go along path until stopping condition met

From each candidate, follow geodesic shortest branches

- Save path at each hop
- Go along path until stopping condition met

End of step 2:

- Batch of equally likely paths

Does batch contains answer?

- If not: return to step I

Generate batch of next most likely first-hop candidates

- Towards group

From each candidate, follow geodesic shortest branches

From each candidate, follow geodesic shortest branches

From each candidate, follow geodesic shortest branches End of step 2:

- Next batch of equally likely paths

Does batch contains answer?

- Yup! So stop

Predictive model: Algorithmic implementation & results

- Implemented algorithm to run on actual graphs from study - Iterated on assigned parameters for angles, etc.
 - -Used all (both training and test set) graphs to test model fit to data
- Results: Yes, can predict search set based on observed path tracing behaviours (Q3)

Nodes hovered during user study

Search Set Case Study: **Multiple Regression Analysis**

Further validation

- How much does this search set concept buy us?
 - -(Q4) how much improvement from measuring metrics on search set?
 - one possible application of search set concept

Validation method

- vast majority of previous work uses NHST
 - null hypothesis significance testing
 - -to determine a metric is important ("edge crossings are significant, p < .05")
- but we really want to know relative importance and overlap! -which metrics are correlated? proxies for the same underlying phenomenon? -multiple regression allows us to untangle how different metrics interact
- only two previous studies used regression
 - -to compare relative importance of metrics [Ware et al., 2002] [Huang & Huang, 2011]
- also, only one previous study compared metrics between levels
 - -edge-edge crossings at global vs. solution-path levels [Ware et al., 2002]

Hierarchical multiple regression experimental design

- compare metrics at three levels within graph
 - -global (hypothesis: too big)
 - solution path (hypothesis: too small)
 - search set (hypothesis: just right)
- 9 metrics tested in total:
 - -global:
 - node-edge & edge-edge crossings
 - -search set
 - node-edge & edge-edge crossings
 - solution path
 - node-edge & edge-edge crossings
 - solution path length (# of hops)
 - solution path continuity (bendiness)
 - solution path branches (# of edges on each node)

Multiple regression experimental design

- some of these never previously studied
 - -global:
 - node-edge & edge-edge crossings
 - -search set
 - node-edge & edge-edge crossings
 - -solution path
 - node-edge & edge-edge crossings
 - solution path length (# of hops)
 - solution path continuity (bendiness)
 - solution path branches (# of edges on each node)

71

Multiple regression details

- data sample
 - 120 graphs: the validation set, previously reserved
 - -metrics measured on each graph
- dependent variables:
 - -average response time
 - -errors per graph (0 12)

72
Key results

- individual effects of metrics
 - -replicated PW showing solution path metrics strongly correlated with response time
 - new result: same effect for error
 - -search set edge-edge crossings strongly correlated with response time and error
 - -global metrics not correlated with response time or error
 - contrary to some previous work
- search set edge-edge crossings had small effect over previous work:
 - -response time: additional 1.8% variance
 - -error: additional 4.2% variance ... on top of what all solution path metrics explained
- search set edge-edge crossings improved efficiency -fewer total variables needed to account for same variance

Key results

- final regression models
 - -79% of variance in response time explained by
 - solution path length
 - solution path continuity
 - search set edge-edge crossings
 - -60% of variance in error explained by
 - search set edge-edge crossings
 - solution path continuity

74

Discussion: Search set

- utility of search set concept
 - -analysis of graph subset most relevant to the task can be very informative
 - example: might explain inconsistent findings on global edge-edge crossings
 - most previous studies used small graphs, where search set and global don't differ much
 - in large graphs, less overlap between them
- future work could explore use of search set for other applications:
 - -design of new interaction techniques
 - new automatic graph layouts that make subtle changes to preserve consistency

Discussion: Methods

- hope to see more use of multiple regression in quantitative evaluation of visualization
 - -vs current dominance of significance testing
 - -esp. for quantitative metrics in contexts beyond graph drawing
- building up from qualitative analysis to quantitative metrics -deeply interested in both!

More on quantification

- Empirical Guidance on Scatterplot and Dimension Reduction Technique Choices. SedImair, Munzner, and Tory. IEEE TVCG (Proc. InfoVis), 19(12):2634-2643, 2013.
 - -alternative to user study with few datasets and many people "data study" with many datasets and few people
 - data characteristics outweigh user differences
 - need for extensive reliable judgements
 - 2 experts quantitatively coded visual separation
 - -816 scatterplots with color-coded clusters: 5460 class judgements, ~80 hrs/coder
- Increasing the Utility of Quantitative Empirical Studies for Meta-analysis. Lam and Munzner. Proc. BELIV 2008.
 - -how we could improve our reporting of quantitative studies

Research agenda: Angles of attack

More information

- theoretical foundations: book (+ tutorial/course lecture slides) http://www.cs.ubc.ca/~tmm/vadbook
 - -20% promo code for book+ebook combo: HVN17
 - <u>http://www.crcpress.com/product/isbn/9781466508910</u>
- this talk http://www.cs.ubc.ca/~tmm/talks.html#stuttgart18
- funding: AT&T Research, NSERC
- papers, videos, software, talks, courses http://www.cs.ubc.ca/group/infovis http://www.cs.ubc.ca/~tmm

@tamaramunzner

Visualization Analysis & Design

Tamara Munzner

Visualization Analysis and Design. Munzner. A K Peters Visualization Series, CRC Press, Visualization Series, 2014.