Design spaces: Continuing theme

- impose systematic structure on set of possibilities for specific problem
 - to capture the key variables at play
 - to support reasoning about design choices

- delineate
 - cross-cutting / independent / orthogonal

- axes / dimensions / categories

- many names
 - design spaces, taxonomies, typologies, classifications, frameworks, models, ...

- space within which to express design patterns [Javed/Elmqvist]

Design spaces: What are they?

- Criteria
 - purposeful
 - interpretable
 - generalizable

Design spaces: What are they for?

- describe and analyze portions of design space to understand differences among designs & suggest new possibilities [Card & Mackay 1997]

- design spaces provide an actionable structure for systematically reasoning about solutions [Egan et al 2020]

Design spaces: How to create?

- open coding source material
 - grounded theory / thematic analysis / qualitative analysis
 - literature review
 - synthesize across existing theories, compare & contextualize

- personal reflection
 - reflective synthesis

- complex combinations...

Design spaces: Multiple examples

- datatset: temporal, timeline visual encoding
 - domain: genomic epidemiology, paper figure visual encoding
 - domain: journalism, data wrangling activities
 - domainagnostic: abstract tasks

Design spaces: What are they?

- impose systematic structure on set of possibilities for specific problem
 - to capture the key variables at play
 - to support reasoning about design choices

- delineate
 - cross-cutting / independent / orthogonal

- axes / dimensions / categories

- many names
 - design spaces, taxonomies, typologies, classifications, frameworks, models, ...

- space within which to express design patterns [Javed/Elmqvist]

Design spaces: What are they for?

- describe and analyze portions of design space to understand differences among designs & suggest new possibilities [Card & Mackay 1997]

- design spaces provide an actionable structure for systematically reasoning about solutions [Egan et al 2020]

Design spaces: How to create?

- open coding source material
 - grounded theory / thematic analysis / qualitative analysis
 - literature review
 - synthesize across existing theories, compare & contextualize

- personal reflection
 - reflective synthesis

- complex combinations...

Design spaces: Multiple examples

- datatset: temporal, timeline visual encoding
 - domain: genomic epidemiology, paper figure visual encoding
 - domain: journalism, data wrangling activities
 - domainagnostic: abstract tasks

Design spaces: What are they?

- impose systematic structure on set of possibilities for specific problem
 - to capture the key variables at play
 - to support reasoning about design choices

- delineate
 - cross-cutting / independent / orthogonal

- axes / dimensions / categories

- many names
 - design spaces, taxonomies, typologies, classifications, frameworks, models, ...

- space within which to express design patterns [Javed/Elmqvist]

Design spaces: What are they for?

- describe and analyze portions of design space to understand differences among designs & suggest new possibilities [Card & Mackay 1997]

- design spaces provide an actionable structure for systematically reasoning about solutions [Egan et al 2020]

Design spaces: How to create?

- open coding source material
 - grounded theory / thematic analysis / qualitative analysis
 - literature review
 - synthesize across existing theories, compare & contextualize

- personal reflection
 - reflective synthesis

- complex combinations...

Design spaces: Multiple examples

- datatset: temporal, timeline visual encoding
 - domain: genomic epidemiology, paper figure visual encoding
 - domain: journalism, data wrangling activities
 - domainagnostic: abstract tasks

Design spaces: What are they?

- impose systematic structure on set of possibilities for specific problem
 - to capture the key variables at play
 - to support reasoning about design choices

- delineate
 - cross-cutting / independent / orthogonal

- axes / dimensions / categories

- many names
 - design spaces, taxonomies, typologies, classifications, frameworks, models, ...

- space within which to express design patterns [Javed/Elmqvist]

Design spaces: What are they for?

- describe and analyze portions of design space to understand differences among designs & suggest new possibilities [Card & Mackay 1997]

- design spaces provide an actionable structure for systematically reasoning about solutions [Egan et al 2020]

Design spaces: How to create?

- open coding source material
 - grounded theory / thematic analysis / qualitative analysis
 - literature review
 - synthesize across existing theories, compare & contextualize

- personal reflection
 - reflective synthesis

- complex combinations...

Design spaces: Multiple examples

- datatset: temporal, timeline visual encoding
 - domain: genomic epidemiology, paper figure visual encoding
 - domain: journalism, data wrangling activities
 - domainagnostic: abstract tasks

Design spaces: What are they?

- impose systematic structure on set of possibilities for specific problem
 - to capture the key variables at play
 - to support reasoning about design choices

- delineate
 - cross-cutting / independent / orthogonal

- axes / dimensions / categories

- many names
 - design spaces, taxonomies, typologies, classifications, frameworks, models, ...

- space within which to express design patterns [Javed/Elmqvist]

Design spaces: What are they for?

- describe and analyze portions of design space to understand differences among designs & suggest new possibilities [Card & Mackay 1997]

- design spaces provide an actionable structure for systematically reasoning about solutions [Egan et al 2020]

Design spaces: How to create?

- open coding source material
 - grounded theory / thematic analysis / qualitative analysis
 - literature review
 - synthesize across existing theories, compare & contextualize

- personal reflection
 - reflective synthesis

- complex combinations...

Design spaces: Multiple examples

- datatset: temporal, timeline visual encoding
 - domain: genomic epidemiology, paper figure visual encoding
 - domain: journalism, data wrangling activities
 - domainagnostic: abstract tasks

Design spaces: What are they?

- impose systematic structure on set of possibilities for specific problem
 - to capture the key variables at play
 - to support reasoning about design choices

- delineate
 - cross-cutting / independent / orthogonal

- axes / dimensions / categories

- many names
 - design spaces, taxonomies, typologies, classifications, frameworks, models, ...

- space within which to express design patterns [Javed/Elmqvist]

Design spaces: What are they for?

- describe and analyze portions of design space to understand differences among designs & suggest new possibilities [Card & Mackay 1997]

- design spaces provide an actionable structure for systematically reasoning about solutions [Egan et al 2020]

Propose typology creation method: mixed qual and quant

Use method to develop typology in specific domain

Domain prevalence design space

By the numbers

Design space axis: Chart types used in genEpi

Design space axis: Chart combinations of heterogeneous data

Design space axis: Enhancement choices, atop base chart types

GEViT example

Assessment

• descriptive power
 – provided common language for describing data visualization in genEpi
 – established gap: unmet tooling needs
 – validated in followup GEViTRec work

• generative power
 – built automatic recommender system using domain prevalence design space

Journalists are data wranglers...

Data Wrangling

An Actionable Framework for Multi-Table Data Wrangling

From an Artifact Study of Computational Journalism
Key finding: journalists use many, many tables

- workflow complexity varies greatly
- current interactive wrangling applications do not scale well
- re-characterize wrangling design space to match these observed practices
A Multi-Level Typology of Abstract Visualization Tasks

Assessment & adoption
- **descriptive power**
 - analyze & compare task sequences, clarify means and ends
- **generative power**
 - early stages of problem-driven work: abstracting & requirements gathering
- **evaluative power**
 - context for field studies, task set for lab studies
- **adoption**
 - hundreds of papers

Final design space: three axes
- why, what, how

Mapping terms
- **Table 1**: Look-up table of
 - upper components, middle components, lower components, middle components, lower components, lower components

Mapping our Vocabulary to Previous Work

Process
- **Directionality**
 - Bottom-Up
 - Top-Down

Constructing a Typology

Summary: Multiple design spaces
- **Design space**
 - analysis goals: resource material
 - analysis reports: extracted from design study papers

VAD Book: Visualization Analysis and Design

VAD Book
- **Map**
 - 36 terms

Bridging From Goals to Tasks with Design Study Analysis Reports
- **http://www.cs.ubc.ca/labs/imager/tr/2017/GoalsToTasks/**

Tasks, Goals, to Previous Work
- **Assessment: Cross-check**
 - **cross-check coverage of multi-table framework vs actions taxonomy**
 - **verify descriptive power**

Multi-table data wrangling design space

- **Object type**
 - Row, Column

- **Table**
 - Create
 - Navigate
 - Transform
 - Combine

Multi-table data wrangling design space

- **Object type**
 - Row, Column

- **Table**
 - Create
 - Navigate
 - Transform
 - Combine

A mid-level gap?

- **A Multi-Level Typology of Abstract Visualization Tasks**
- **http://www.cs.ubc.ca/labs/imager/tr/2017/GoalsToTasks/**
- **http://www.cs.ubc.ca/labs/imager/tr/2017/GoalsToTasks/**

Task abstraction: Gap

- **High level of abstraction**
 - e.g. “report data”

- **Low level of abstraction**
 - e.g. “interacting”

Final design space: three axes

- why, what, how

Mapping our Vocabulary to Previous Work

- **Table 1**: Look-up table of
 - upper components, middle components, lower components, middle components, lower components, lower components

Mapping terms

- **Table 1**: Look-up table of
 - upper components, middle components, lower components, middle components, lower components, lower components

Process

- **Directionality**
 - Bottom-Up
 - Top-Down

- **Constructing a Typology**

Summary: Multiple design spaces
- **Design space**
 - analysis goals: resource material
 - analysis reports: extracted from design study papers

Bridging From Goals to Tasks with Design Study Analysis Reports
- **http://www.cs.ubc.ca/labs/imager/tr/2017/GoalsToTasks/**

Tasks, Goals, to Previous Work

- **Assessment: Cross-check**
 - **cross-check coverage of multi-table framework vs actions taxonomy**
 - **verify descriptive power**

Final design space: three axes

- why, what, how

Mapping terms

- **Table 1**: Look-up table of
 - upper components, middle components, lower components, middle components, lower components, lower components

Process

- **Directionality**
 - Bottom-Up
 - Top-Down

- **Constructing a Typology**

Summary: Multiple design spaces
- **Design space**
 - analysis goals: resource material
 - analysis reports: extracted from design study papers

Bridging From Goals to Tasks with Design Study Analysis Reports
- **http://www.cs.ubc.ca/labs/imager/tr/2017/GoalsToTasks/**

Tasks, Goals, to Previous Work

- **Assessment: Cross-check**
 - **cross-check coverage of multi-table framework vs actions taxonomy**
 - **verify descriptive power**

Final design space: three axes

- why, what, how

Mapping terms

- **Table 1**: Look-up table of
 - upper components, middle components, lower components, middle components, lower components, lower components

Process

- **Directionality**
 - Bottom-Up
 - Top-Down

- **Constructing a Typology**

Summary: Multiple design spaces
- **Design space**
 - analysis goals: resource material
 - analysis reports: extracted from design study papers

Bridging From Goals to Tasks with Design Study Analysis Reports
- **http://www.cs.ubc.ca/labs/imager/tr/2017/GoalsToTasks/**

Tasks, Goals, to Previous Work

- **Assessment: Cross-check**
 - **cross-check coverage of multi-table framework vs actions taxonomy**
 - **verify descriptive power**

Final design space: three axes

- why, what, how

Mapping terms

- **Table 1**: Look-up table of
 - upper components, middle components, lower components, middle components, lower components, lower components

Process

- **Directionality**
 - Bottom-Up
 - Top-Down

- **Constructing a Typology**

Summary: Multiple design spaces
- **Design space**
 - analysis goals: resource material
 - analysis reports: extracted from design study papers
Design spaces: How to assess? Larger context: theory types

- Ben Shneiderman, Designing the User Interface: descriptive, explanatory, prescriptive, predictive
- Paul Ralph, Toward Methodological Guidelines for Process Theories & Taxonomies in Software Engineering, IEEE TSE 2020

Ben Shneiderman
- Designing the User Interface: descriptive, explanatory, prescriptive, predictive
- Toward Methodological Guidelines for Process Theories & Taxonomies in Software Engineering, IEEE TSE 2020

Paul Ralph
- Toward Methodological Guidelines for Process Theories & Taxonomies in Software Engineering, IEEE TSE 2020

More information
- [this talk](http://www.cs.ubc.ca/~tmm/talks.html#stanf22)
- [book](http://www.cs.ubc.ca/~tmm/vadbook)
- [full courses, papers, videos, software, talks](http://www.cs.ubc.ca/group/infovis)