TreeJuxtaposer: Scalable Tree Comparison using Focus+Context with Guaranteed Visibility

Tamara Munzner Univ. British Columbia François Guimbretière Univ. Maryland College Park

Serdar Taşiran Koç University Li Zhang, Yunhong Zhou Hewlett Packard Systems Research Center

TreeJuxtaposer contributions

- · Interactive tree comparison system
 - automatic detection of structural differences
 sub-quadratic preprocessing
 - efficient Focus+Context navigation and layout
 merge overview and detail in single view
 - -guaranteed visibility under extreme distortion

Scalable

- dataset size: handles 280K 500K nodes
- display size: handles 3800x2400 display

TreeJuxtaposer video

- · Platforms shown
 - java 1.4, GL4Java 2.7 bindings for OpenGL
 - Windows
 - 2.4 GHz P3, nVidia Quadro4 700XGL
 - 1.1GB java heap
 - window sizes 1280x1024, 3800x2400
 - Linux
 - 3.1 GHz P4, nVidia GeForce FX 5800 Ultra
 - 1.7GB java heap
 - window size 800x600

10

Outline

- · Application domain: evolutionary trees
- · Demonstration
- Computing structural differences
- Guaranteed visibility of marked areas

11

· Results and conclusions

29

Guaranteed visibility of marks

- How can a mark disappear? - moving outside the frustum
- Solutions
 - choose global Focus+Context navigation
 "tacked down" borders

Spatial range solution

- · Recursive spatial subdivision
 - quadtree
 - store range of objects enclosed for each cell
 - -quick check: spatial range vs. selection range
- Extending quadtrees to Focus+Context – quadtree cells also "painted on rubber sheet"
 - efficient O(log n) update when stretch/shrink
 - details in paper

43

45

47

Guaranteed visibility previous work

- · Visibility of abstract information
 - Effective view navigation [Furnas 97]
 - Critical zones [Jul and Furnas 98]

Outline

- · Application domain: evolutionary trees
- · Demonstration
- Computing structural differences
- · Guaranteed visibility of marked areas
- · Results and conclusions

Difference computation

- Powerful and totally automatic
 - -leads users to important locations
 - efficient algorithms: 7s for 2x140K nodes
 - matches intuition
 - UT-Austin Biology Lab, several others

Challenges

- memory footprint
- handling weighted edges

46

48

44

Guaranteed visibility

- Relief from exhaustive exploration

 missed marks lead to false conclusions
 - hard to determine completion
 - tedious, error-prone
 - tealous, error-prone
- Compelling reason for Focus+Context
 - controversy: does distortion help or hurt?
 - strong rationale for comparison

Guaranteed visibility challenges
Integration with progressive rendering
— might lose context during motion

- need several seeds for rendering queue
 - focus pointmarked items
 - marked items
- up to empirical cutoff, no guarantees
- Constraint to fit everything in frustum
 instead could show indirectly

Future Work

- Adoption
 - open-source release
 - tighter integration with biology tools
 - broad range of application domains
- Detectability vs. visibility

 display resolution, surrounding colors
- Extend difference computation
 - -weighted trees
 - graphs

Conclusion

- First interactive tree comparison system – automatic structural difference computation
 - guaranteed visibility of marked areas
- · Scalable to large datasets
 - 250,000 to 500,000 total nodes
 - all preprocessing subquadratic
 - all realtime rendering sublinear
- Techniques broadly applicable
 not limited to biological trees

50

Acknowledgments

- Biologists
- David Hillis, Bob Jensen, Will Fischer, Derrick ZwicklComputer scientists
- Nina Amenta, Katherine St. John
- Partial funding
 - NSF/DEB-0121682

Talk preparation

 Mary Czerwinski, Pat Hanrahan, George Robertson, Chris Stolte, Diane Tang, Gina Venolia

51

49