TreeJuxtaposer:
Scalable Tree Comparison using Focus+Context with Guaranteed Visibility

Tamara Munzner
Univ. British Columbia

François Guimbretière
Univ. Maryland College Park

Serdar Taşiran
Koç University

Li Zhang, Yunhong Zhou
Hewlett Packard Systems Research Center

Tree comparison
- Active area: hierarchy visualization
 - previous work: browsing
 - comparison still open problem
- Bioinformatics application
 - phylogenetic trees reconstructed from DNA

Inferring species relationships

Phylogenetic tree

Tree of Life: 10M species
Comparing trees: current practice

Biologists’ requirements

• Reliable detection of structural differences
 – rapid identification of interesting spots
• Analysis of differences in context
 – mostly side by side comparison
• Manipulation of increasingly larger trees
 • Support for multiple platforms

TreeJuxtaposer contributions

• Interactive tree comparison system
 – automatic detection of structural differences
 • sub-quadratic preprocessing
 – efficient Focus+Context navigation and layout
 • merge overview and detail in single view
 – guaranteed visibility under extreme distortion

• Scalable
 – dataset size: handles 280K – 500K nodes
 – display size: handles 3800x2400 display

TreeJuxtaposer video

• Platforms shown
 – java 1.4, GL4Java 2.7 bindings for OpenGL
 – Windows
 • 2.4 GHz P3, nVidia Quadro4 700XGL
 • 1.1GB java heap
 • window sizes 1280x1024, 3800x2400
 – Linux
 • 3.1 GHz P4, nVidia GeForce FX 5800 Ultra
 • 1.7GB java heap
 • window size 800x600

Outline

• Application domain: evolutionary trees
• Demonstration
• Computing structural differences
• Guaranteed visibility of marked areas
• Results and conclusions

Comparing tree

- rayfinned fish
- lungfish
- salamander
- frog
- mammal
- bird
- crocodile
- lizard
- snake
- turtle
Matching leaf nodes

Matching leaf nodes

Matching leaf nodes

Matching leaf nodes

Matching interior nodes

Matching interior nodes

Matching interior nodes

Matching interior nodes
Matching interior nodes:

Previous work:
- Tree comparison
 - RF distance [Robinson and Foulds 81]
 - perfect node matching [Day 85]
 - creation/deletion [Chi and Card 99]
 - leaves only [Graham and Kennedy 01]

Similarity score: $S(m,n)$

Best corresponding node

Marking structural differences

Outline
- Application domain: evolutionary trees
- Demonstration
- Computing structural differences
- Guaranteed visibility of marked areas
- Results and conclusions

Best corresponding node calculable in $O(n \log^2 n)$

Nodes for which $S(v, BCN(v)) \neq 1$ matches intuition

Marking structural differences

Nodes for which $S(v, BCN(v)) \neq 1$ matches intuition
Guaranteed mark visibility

Marks
- Region of interest shown with color highlight
 - structural difference
 - search results
 - user-specified
- Purpose
 - guide navigation
 - provide landmarks
 - subtree contiguity check

Guaranteed visibility of marks
- How can a mark disappear?
 - moving outside the frustum

Guaranteed visibility of marks
- How can a mark disappear?
 - moving outside the frustum

Guaranteed visibility of marks
- How can a mark disappear?
 - moving outside the frustum
- Solutions
 - choose global Focus+Context navigation
 - "tacked down" borders

Focus+Context previous work
- combine overview and detail into single view
- Focus+Context
 - large tree browsing
 - Cone Trees [Robertson et al 91]
 - Hyperbolic Trees [Lamping et al], H3 [Munzner 97]
 - SpaceTree [Plaisant et al 02]
 - DOI Trees [Card and Nation 02]
 - global
 - Document Lens [Robertson and Mackinlay 93]
 - Rubber Sheets [Sarkar et al 93]
- our contribution
 - scalability, guaranteed visibility
Guaranteed visibility of marks

• How can a mark disappear?
 – moving outside the frustum
 – occlusion

• Solutions
 – choose global Focus+Context navigation
 • “tacked down” borders
 – choose 2D layout
 – develop efficient check for marks when culling

Guaranteed visibility of marks

• How can a mark disappear?
 – moving outside the frustum

• Solutions
 – choose global Focus+Context navigation
 • “tacked down” borders
 – choose 2D layout

Preserving marks while culling

• Show mark at unculled node
Preserving marks while culling

- Show mark at unculled node

Mark preservation strategies

- Compress large subtree to small spatial area

User selects nodes [135,199995]

- Propagation: cost depends on total nodes
- Precomputation: cost depends visible nodes

Marks and linked highlighting

- Also check for linked marks from other tree
 - check if best match for node is marked
 - up to O(n) to look up each node in range
 - intersect node ranges between trees
 - reduces to point in polygon test, O(log²n)

Efficient marking detection

- Intersecting ranges between trees
 - Query in O(log²n)

Storing topological ranges

- At each node, store range of subtree beneath
 - range stored doesn't match spatial range needed

Visibility limit

Compress large subtree to small spatial area

Also check for linked marks from other tree

Efficient marking detection

Storing topological ranges
Storing spatial ranges
• At each box, store range of objects inside

Spatial range solution
• Recursive spatial subdivision
 – quadtree
 – store range of objects enclosed for each cell
 – quick check: spatial range vs. selection range
• Extending quadtrees to Focus+Context
 – quadtree cells also “painted on rubber sheet”
 – efficient $O(\log n)$ update when stretch/shrink
 • details in paper

Rendering infrastructure
• Focus+Context QuadTree
 – Fixed mapping between nodes and quad cell
 • Sparse cell instantiation
 – Split boundary relative to the node parent
 • Hierarchical propagation of deformation

Guaranteed visibility previous work
• Visibility of abstract information
 – Effective view navigation [Furnas 97]
 – Critical zones [Jul and Furnas 98]

Outline
• Application domain: evolutionary trees
• Demonstration
• Computing structural differences
• Guaranteed visibility of marked areas
• Results and conclusions

Difference computation
• Powerful and totally automatic
 – leads users to important locations
 – efficient algorithms: 7s for 2x140K nodes
 – matches intuition
 • UT-Austin Biology Lab, several others
• Challenges
 – memory footprint
 – handling weighted edges
Guaranteed visibility

- Relief from exhaustive exploration
 - missed marks lead to false conclusions
 - hard to determine completion
 - tedious, error-prone

- Compelling reason for Focus+Context
 - controversy: does distortion help or hurt?
 - strong rationale for comparison

Guaranteed visibility challenges

- Integration with progressive rendering
 - might lose context during motion
 - need several seeds for rendering queue
 - focus point
 - marked items
 - up to empirical cutoff, no guarantees

- Constraint to fit everything in frustum
 - instead could show indirectly

Future Work

- Adoption
 - open-source release
 - tighter integration with biology tools
 - broad range of application domains

- Detectability vs. visibility
 - display resolution, surrounding colors

- Extend difference computation
 - weighted trees
 - graphs

Conclusion

- First interactive tree comparison system
 - automatic structural difference computation
 - guaranteed visibility of marked areas

- Scalable to large datasets
 - 250,000 to 500,000 total nodes
 - all preprocessing subquadratic
 - all realtime rendering sublinear

- Techniques broadly applicable
 - not limited to biological trees

Acknowledgments

- Biologists
 - David Hillis, Bob Jensen, Will Fischer, Derrick Zwickl

- Computer scientists
 - Nina Amenta, Katherine St. John

- Partial funding
 - NSF/DEB-0121682

- Talk preparation
 - Mary Czerwinski, Pat Hanrahan, George Robertson, Chris Stolte, Diane Tang, Gina Venolia