Marks Revisited: Beyond Bertin

Tamara Munzner
Department of Computer Science
University of British Columbia
Northeastern Vancouver
12 Jul 2024
@tamara@vis.social

Marks and channels: Foundational model
• decompose visual encoding into marks & channels
 - marks
 • geometric primitives
 • represent data items
 - channels
 • control appearance of marks
 • represent data distributions
widely used
- Bertin 1967
- Sensing of Graphics

Current Marks & Channels Model
- marks & channels model is a design space
 - descriptive power: ability to describe significant range of existing examples
 - evaluative power: ability to help assess multiple design alternatives
- generative power: ability to help designers create new designs
- many names: taxonomies, typologies, classifications, frameworks, models, grammars...
- design spaces help us reason
 - impose systematic & actionable structure on set of possibilities for specific problem
 - support reasoning about design choices
 - capture key variables of play
 - increase cognitive efficiency & technical effectiveness by grouping similar tasks together to facilitate meaning about design

Why analyze visual encodings?
- marks & channels model is a design space
- analyzing idiom structure as combination of marks and channels
 - 1 channel: vertical position
 - mark: line
 - 2 channels: vertical position, horizontal position
 - mark: point

Talk outline
- explain current marks & channels model
- walk through many questions that arise when teaching it
- present preliminary ideas towards an alternative model

Visual encoding model
• analyze idiom structure as combination of marks and channels
 - 1 channel: vertical position
 - mark: line
 - 2 channels: vertical position, horizontal position
 - mark: point

Visual encoding model: Spatial data
• marks for items of spatial data
 - idiom: choropleth map
 - marks: point for data items, rectangular bars for links

Visual encoding model: Temporal data
• marks for items of tabular data
 - idiom: table
 - marks: points for data items, rectangular bars for links

Visual encoding model: Multidimensional data
• marks for items of multidimensional data
 - idiom: matrix
 - marks: points for data items, rectangular bars for links

Design spaces in visualization: continuing theme
- exploring the design space of visual encodings
 - marks & channels model is a design space
 - analyzing idiom structure as combination of marks and channels
 - 1 channel: vertical position
 - mark: line
 - 2 channels: vertical position, horizontal position
 - mark: point

Marks and channels: Foundational model
• decompose visual encoding into marks & channels
 - marks
 • geometric primitives
 • represent data items
 - channels
 • control appearance of marks
 • represent data distributions

Visual encoding model
• analyze idiom structure as combination of marks and channels
 - 1 channel: vertical position
 - mark: line
 - 2 channels: vertical position, horizontal position
 - mark: point

Current Marks & Channels Model
- marks & channels model is a design space
 - descriptive power: ability to describe significant range of existing examples
 - evaluative power: ability to help assess multiple design alternatives

Why analyze visual encodings?
- marks & channels model is a design space
- analyzing idiom structure as combination of marks and channels
 - 1 channel: vertical position
 - mark: line
 - 2 channels: vertical position, horizontal position
 - mark: point

Visual encoding model
• analyze idiom structure as combination of marks and channels
 - 1 channel: vertical position
 - mark: line
 - 2 channels: vertical position, horizontal position
 - mark: point

Visual encoding model: Spatial data
• marks for items of spatial data
 - idiom: choropleth map
 - marks: point for data items, rectangular bars for links

Visual encoding model: Temporal data
• marks for items of tabular data
 - idiom: table
 - marks: points for data items, rectangular bars for links

Visual encoding model: Multidimensional data
• marks for items of multidimensional data
 - idiom: matrix
 - marks: points for data items, rectangular bars for links

Design spaces in visualization: continuing theme
- exploring the design space of visual encodings
 - marks & channels model is a design space
 - analyzing idiom structure as combination of marks and channels
 - 1 channel: vertical position
 - mark: line
 - 2 channels: vertical position, horizontal position
 - mark: point
Rethinking book design space: Visualization Analysis & Design 2e

Teaching Challenges

Quiz: Name marks/channels
• Shooting Media Coverage
 • A-points
 • B-lines
 • C-areas
 • A-position
 • B-color
 • C-length
 • D-area
 • E-angle

Quiz: Name marks/channels
• Tax Rates
 • marks
 – A-points
 – B-lines
 – C-areas
 • channels
 – A-position
 – B-color
 – C-length
 – D-area
 – E-angle

Mark/channel analysis: scope & limits
• model: one mark for one data item
 • model inherited from Bertin (Semiology of Graphics, 1967)
 • never questioned
 • geometric motivation
 – geometric primitives have dimensions
 – how could we argue with math?

Channels: Model evolves, heavily studied
• effectiveness rankings
• expressiveness matches, data & task

Encoding vs decode: Where do models diverge?
• idiom pie chart
 • encode: area marks with area channel
 • ordered: radius, uniform length
 • accuracy: area less accurate than rectangular aligned position/length
 • decode: not as tight, probably arc length, maybe also area

Constraints
• consider marks and channels as imposing constraints
 – when does mark type constrain channel use?
 – when does using one channel constrain another channel?

Alternative Ideas

Teaching: Bertini in-class exercises, catalyst for questions
• decoding marks & channels

Many, many questions
• so what?
 – evidence that this design space could be improved!

Quiz: Name marks
• points, lines, areas?

Encodings vs decoding models
• Encoding model: what should visualization designer do?
 – prescriptive model, providing guidance for design
 – predicting viewer response differs from inferring or reverse-engineering designer intent when encoding!

Many, many questions
• so what?
 – evidence that this design space could be improved!

Mark/Channel analysis: scope & limits
• model scope: one mark for one data item
 • model: one mark for one data item, glyphs, multiple views

Alternative Ideas

Teaching design space: analyze visual encoding & map to data
• assignment: analyze existing encoding with marks & channels
 – visual channels used?
 • channel X encodes attribute Y
 – marks used?
 • mark of type X encodes attribute Y

Many, many questions
• so what?
 – evidence that this design space could be improved!
Channel use: what does it mean?

- Does channel size encode directly to attributes?
 - yes? sizes differ
 - according to dog name in data
- not?: sizes differ not meaningful
- just emerges from choice of layout, radial or rectangular
- not a "real" attribute encoding

Can we use size channel to encode another attribute?
- no, not free
- it's "taken" already
- would change meaning
- Size channel is Unavailable

Channel Availability Model
- Encoded channels:
 - clear meaning
 - many channels can be directly used for redundant encoding
- Free: which channels free to encode another attribute?
 - without changing usability of existing encoding

Unavailable: which channels unavailable / precluded / taken?
- because of mark type
- because of idioms/algorithms design specifics
- because other channels used!

Area marks: Rethinking
- area marks are a terrible name
 - other marks all have graphical area too
- showing us to encode with color
- comparative points of view: they're all just polygons
- there's also an "area" channel, which is confusingly different
- area is not the only channel in play with these marks!

Area marks: obvious example: choropleth maps
- what can we do to California? could we encode additional data?
 - cannot shrinkgrow (size channel)
 - cannot translate (position channel)
 - cannot rotate (orientation channel)

why not?
- would lose meaning of that mark boundary is the data
 - also lose meaning for other occluded marks

"area" mark is not specific enough
- AreaPositionOrientationShape mark? nah...
- idea: Interlocking

Interlocking marks: What does it mean?
- does channel size encode attribute?
 - yes? sizes differ
- according to dog name in data

Analysis marks
- what type of mark?
 - line
 - no, not length coded
 - point mark with rectangular shape?
 - 2025 yd
 - 2025 yd
 - cannot change position / size / orientation
 - area?
 - 2020 no, area/shapes do not convey meaning
 - 2025 yd
 - fully interlocking
 - position, size, shape, orientation all locked

Interlocking marks: Circle packings
- also are interlocking marks, not size-coded point marks
 - more like treemap than Cartesian
 - channel availability analysis: customized circle packing
 - occupied channels
 - horizontal position encodes tax rate
 - color: rate, redundant with horizontal position
 - size (2D area) market cap
 - Free channels
 - Unavailable channels
 - vertical position used by algorithm to avoid overlap & minimize gaps
 - shape & orientation equal and unavoidable can't just change, would need to redo layout

Interlocking marks: Non-spatial
- also are interlocking marks
 - example with non-spatial data?
 - treemaps
 - show hierarchy with containment, not connection
 - encode additional attributes with area/size
 - again, cannot change just one mark alone
 - could recompute layout to change all at once
 - combined layout of all marks together
 - carries meaning
 - unlike spatial data mark boundaries
 - individual mark boundaries lose intrinsic meaning

Interlocking marks: Tile heatmaps
- 2D matrix/grid as index
 - position in use as index
 - size/area & shape & orientation all equal (locked down)
- simplest possible case of interlocking marks!
 - more regular than choropleths or treemaps
 - but underdetermined similarities
 - full extent of cell used for color coding...different from using a point mark within the cell

Interlocking marks: Circle packings
- customized circle packings are special case
 - including beeswarm plots
 - general circle packing
 - algorithmic constraint: no overlaps, minimal gaps
 - position unavailable since used by algorithm
 - Doring cartogram
 - can treat as special case of circle packing, with additional constraints to maintain relative position from geographic location
 - throw away shape by regularizing to circles
 - add size coding

Quiz: Name that mark
- UFC fights: points? lines? areas?

Analyzing marks
- what type of mark?
- line
- no, not length coded
- point mark with rectangular shape?
- 2025 yd
- 2025 yd
- cannot change position / size / orientation
- area?
- 2020 no, area/shapes do not convey meaning
- 2025 yd
- fully interlocking
- position, size, shape, orientation all locked

Interlocking marks: Circle packings
- yes interlocking
- A: already covered
- B/C: equal-area algorithms
- E/F: multi-level
- top-level interlocking marks
- bottom-level squares units
- L: fanout for more
- 9. subsets: position-specific designing
- no point marks
- size: coded by area

Line marks: Rethinking
- do line charts use line marks?
 - many channels unavailable: size, position, shape, orientation
 - proposal: rename from "area" to "Interlocking"

Line marks: Naming two cases separately
- line segments showing single item, vs curved lines showing multiple items
 - should we reason about them separately instead of analyzing them together?
 - single line segment: express single qualitative attribute for one item with length
 - single mark represents single item of data
 - proposal call these "segments"
 - curved / complex lines
 - proposal call these "paths"
 - single mark represents many items of data

Distinguishing marks through constraints
- highly constrained interlocking marks
 - many channels unavailable: size, position, shape, orientation
 - proposal: rename from "area" to "Interlocking"

Unconstrained point marks:
- can encode more info in any channel at all!
 - size, position, shape, orientation
 - color, motion...
- does "point" imply circular shape?
- proposal is "unconstrained" a better / more concise name?

Line marks: Rethinking
- do line charts use line marks?
 - many channels unavailable: size, position, shape, orientation
 - proposal: rename from "area" to "Interlocking"

Distinguishing marks through constraints
- highly constrained interlocking marks
 - many channels unavailable: size, position, shape, orientation
 - proposal: rename from "area" to "Interlocking"

Unconstrained point marks:
- can encode more info in any channel at all!
 - size, position, shape, orientation
 - color, motion...
- does "point" imply circular shape?
- proposal is "unconstrained" a better / more concise name?

so... what about line marks?
From marks to glyphs: multiple marks/item
- glyphs: more than one mark per item
 - grouped bars
 - stacked bars
 - multiple views
 - bar chart small multiples

From marks to glyphs: multiple marks/item
- glyphs: more than one mark per item
 - grouped bars
 - stacked bars
 - multiple views
 - bar chart small multiples
More stuff

- this talk
 http://www.cs.ubc.ca/~tmm/talks.html#northeastern24

-- more questions? thoughts on answers??

- book
 http://www.cs.ubc.ca/~tmm/vadbook

- full courses, papers, videos, software, talks
 http://www.cs.ubc.ca/group/infovis
 http://www.cs.ubc.ca/~tmm

Visualization Analysis and Design. Munzner.
@tamaramunzner
@tamara@vis.social