Data and Dataset Types

Data Types

Tables

Attributes (columns)

Trees

Attributes

Positions

Geometry

What?

Attributes (columns)

Value in cell

Clusters,

Diverging

Quantitative

Ordinal

Internal or External Representation

External Representation: Replace Cognition with Perception

Why?

Computer-based visualization systems designed to help people carry out tasks more effectively.

What?

Visualization (vis) defined & motivated

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

Visualization (vis) defined & motivated

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

Why represent all the data?

Contents

Why focus on tasks and effectiveness?

Why analyze?

Why focus on tasks and effectiveness?

Why analyze?

• summaries lose information, details matter
• confirm expected and find unexpected patterns
• assess validity of statistical model

Anscocomb's Quartet

Identical statistics

Further reading

• Ch9. Why focus on tasks and effectiveness?
• Why represent all the data?
• Why focus on tasks and effectiveness?
• Why analyze?
• Why focus on tasks and effectiveness?
• Why analyze?
• Why focus on tasks and effectiveness?
• Why analyze?
Types: Datasets and data types

- **Dataset Types**
 - Tables
 - Networks
- **Attributes**
 - Categorical
 - Quantitative

Three major data types
- **Tables**
 - Fields
 - Geometry
- **Networks**
 - Fields (continuous)
 - Geometry (spatial)
- **Spatial**
 - Fields (continuous)
 - Geometry (spatial)

Data and dataset types
- **Data and Dataset Types**
 - Tables
 - Networks & Trees
 - Fields
 - Geometry
 - Clusters, Sets, Lists

Attributes
- **Attributes**
 - Links
 - Positions
 - Grids

Actions: Analyze, Query

- **Consume**
 - discover vs present
 - alias explore vs explain
- **Analyze**
 - discover
 - annotate, record
 - derive
- **Produce**
 - quantitate
 - analyze
 - query

Attribute types
- **Categorical**
 - Ordinal
 - Quantitative

Ordering Direction
- **Sequential**
- **Diverging**
- **Cyclic**

Further reading, full Ch 2
 - The Eyes Have It: A Taxonomy for Information Visualization, Ben Shneiderman. Proc. IEEE InfoVis 1996.

Further reading, full Ch 3
Discriminability: How many usable steps?
- must be sufficient for number of attribute levels to show
 - linewidth: few bns but salient
 - expression principle
 - match channel and data characteristics
 - expressiveness principle
 - encode most important attributes with highest ranked channels

Separability vs. Integrity
- perceptual system mostly operates with relative judgements, not absolute
 - Weber's Law: ratios of increment to background is constant
 - filled rectangles differ in length by 1.2, easy judgement

Relative vs. absolute judgements
- perception of luminance is contextual based on contrast with surroundings
- speed independent of distractor count
- speed depends on channel and amount of difference from distractors
- serial search for (almost all) combinations
- speed depends on number of distractors

Further Reading

Ch 6. Rules of Thumb
- No unjustified 3D
 - Power of the plane
 - Disparity of depth
 - Occlusion hides information
 - Perspective distortion dangers
 - Tilted text isn't illegible
- No unjustified 2D
 - Eyes beat memory
 - Resolution over immersion
 - Overview first, zoom and filter, details on demand
 - Responsiveness is required
 - Function first, form next

Further Reading
Perspective distortion loses information

- perspective distortion
 - interferes with all size channel encodings
 - power of the plane is lost!

3D vs 2D bar charts

- 3D bars very difficult to justify!
 - perspective distortion
 - occlusion
 - faceting into 2D almost always better choice

Justified 3D: shape perception

- benefits outweigh costs when task is shape perception for 3D spatial data
 - interactive navigation supports synthesis across many viewpoints

No unjustified 3D example: Time-series data

- extruded curves: detailed comparisons impossible

Justified 3D: Economic growth curve

- constrained navigation steps through carefully designed viewpoints

Eyes beat memory

- principle: external cognition vs. internal memory
 - easy to compare by moving eyes between side-by-side views
 - harder to compare visible item to memory of what you saw

Implications for animation

- great for choreographed storytelling
 - great for transitions between states
- poor for many states with changes everywhere
 - consider small multiples instead

Eyes beat memory example: Cerebral

- small multiples: one graph instance per experimental condition
 - same spatial layout
 - color differently by condition

Why not animation?

- disparate frames and regions: comparison difficult
 - vs contiguous frames
 - vs small region
 - vs coherent motion of group

 safe special case
- animated transitions
Arrange Tables
Separate, Order, Align Regions
Express Values
Axis Orientation
Layout Density
Express Values
Rectilinear
Parallel
Radial

Overview first, zoom and filter, details on demand
• influential mantra from Shneiderman
 • overview = summary
 • microcosm of full vis design problem
 • layout density
 • dense space-filling
 • separation order align
 • 1 key 2 keys 3 keys many keys
 • list recursive subdivision
 • volume matrix
 • rectilinear parallel radial

Rule of thumb: Responsiveness is required
• 0.1 seconds: perceptual processing
• 0.2 seconds: response for meaningful highlighting - ballistic reaction
• 0.5 seconds: immediate response
• fast response after mouseclick, button press - Fitt's Law limits on mouse control
• 1 second: brief task
• bounded response after dialog box - mental model of heavyweight operation (file load)
• scalability considerations
 • highlight selection with complete redraw of view (graphics framebuffer)
 • show houghs for multi-second operations (check for cancel/undo)
 • show progress bar for long operations (process in background thread)
 • rendering speed when item count is large (guaranteed frame rate)

Function first, form next
• start with focus on functionality
 • possible to improve aesthetics later on, as refinement
 • if no expertise in-house, find good graphic designer to work with
 • aesthetics do matter: another level of function
 • visual hierarchy, alignment, flow
 • Gestalt principles in action
 • dangerous to start with aesthetics
 • usually impossible to add function retroactively

Form: Basic graphic design principles
• projecting
 • do group-related items together
 • avoid equal whitespace between unrelated items
• algorithm
 • do find shortest strong line, stick to it
 • avoid automatic centering
• repetition
 • do unify by pushing existing consistencies
• contrast
 • if few identical, then very different
 • avoid similar
• layout density
 • buy now and read cover to cover - very practical, worth your time, fast read!

Best practices: Labelling
• make visualizations as self-documenting as possible
• meaningful & useful title, labels, legends
• axes and panels/axes should have labels
• and axes should have good readable boundary tick marks
• everything that's plotted should have a legend
• and over-labeling is not redundant with main title
• use reasonable number of fonts
• avoid scientific notation in most cases

Further reading
• Visualization and Analysis and Design. Tamara Munzner. CRC Press, 2014. - Chap 4: Rules of Thumb

Encode tables: Arrange space
• encode
 • express
 • separate
 • order
 • align
 • key
 • key

Ch 7. Arrange Tables
Idiom: bar chart
- one key, one value
 - data
 - 1 categ attrib, 1 quant attrib
 - mark: line
 - channels
 - length: express quant value
 - spatial regions: one per mark
 - separated horizontally aligned vertically
 - ordered by quant attribs
 - by label (alphabetically), by length attrib (data-driven)
 - task
 - compare, lookup values
 - scalability
 - dozens to hundreds of keys for each mark

LIMITATION: Hard to make comparisons

[Slide courtesy of Ben Jones]
Idiom: similarity-clustered streamlines

- data
 - 3D vector field
- derived data (from field)
 - similarity—streamlines will follow
- derived data (per streamline)
 - curvature, torsion, torsority
- agnostic: complex, weighted combination
- compute cluster hierarchy across all signatures
- encode color and opacity by cluster
- tasks
 - find features, query shape
- scalability
 - millions of samples, hundreds of streamlines

Further reading

- Chap 8: Arrange Speed Dots
- Further reading, full

Idiom: force-directed placement

- visual encoding
 - link connection marks, node point marks
- considerations
 - special position on meaning directly encoded
 - left to too extensive zoom
 - proximity semantics
 - variations of other tools
 - various tabular, artful lab of layout algorithms
 - weighs and flex
 - long edges carry more than short
- tasks
 - explore topology, locate paths, clusters
- scalability
 - node/edge density < 40

Further reading

- Data: network
 - derived cluster hierarchy
 - better algorithm for some encoding technique
 - some fundamental use of space
 - hierarchy used for algorithm sensitivity that is not shown explicitly
 - use an algorithm vs encoding in itself
- scalability
 - nodes, edges: IK-10K
 - hard problem eventually hits

Idiom: radial node-link tree

- data
 - tree
- encoding
 - link connection marks
 - point node marks
 - radial arc orientation
 - angular proximity vector
- tasks
 - understand topology, following path
- scalability
 - IK-10K nodes

Further reading

- Data: network
 - 1 quant attr
 - weight edge between nodes
 - 2-cang attrb: node less x 2
- visual encoding
 - cell shows presence/absence of edge
- scalability
 - IK nodes, IAM edges

Idiom: sfdp (multi-level force-directed placement)

- data: network
- transform into same data encoding as heapmap
- derived data: table from network
 - 1 quant attrb
 - weighted edge between nodes
 - 2-cang attrb: node less x 2
- visual encoding
 - cell shows presence/absence of edge
- scalability
 - IK nodes, IAM edges

Idiom: adjacency matrix view

- marks as links (vs notes)
 - common case in network drawing
- ID case: connection
 - all node-link diagrams
- emphasize topology path tracing
 - networks and trees
- 2D case: containment
 - all tree views
 - emphasize attribute values at leaves (node size)
 - only trees

Link marks: Connection and containment

- Ch 10. Map Color and Other Channels

Tree drawing idioms comparison

- data shown
 - link relationship
 - tree depth
 - sibling order
- design choices
 - controls vs containment/link marks
 - rectilinear vs radial layout
- spatial position choices
- considerations
 - redundant? arbitrary?
- information density?
- avoid wasting space

Further reading

- Chap 8: Arrange Speed Dots
- Further reading, full

Ch 9. Arrange Networks and Trees

- Node-Link Diagrams
 - node matrix
 - adjacency matrix
 - containment
 - tree matrix
- Enclosure
 - containment
- node-link diagram strengths
 - derived data: table from network
 - visual encoding
 - scalability
 - node/edge density < 40
- connection vs. adjacency comparison
 - predictability, scalability, supports reordering
 - some topology tasks trainable
 - node-link diagram strengths
 - topology understanding, path tracing
 - intuitive, no training needed
 - empirical study
 - node-link best for small networks
 - matrix best for large networks

- If tasks don’t involve topological structure!
 - the readability of graphs using scalable and topological representations, a conceded experiment using statistical analysis.

Connection vs. Adjacency vs. Similarity

- see discussion in earlier papers
- this chapter is more of a summary and overview of the principles

- Figure 7.5 shows a simple example of an undirected network, with a relation from node A to node B necessarily implies a link from B to A. For directed networks, an associated quantitative value attribute, by encoding with an ordered channel metric, a value.

Spectral sensitivity

Luminance
- Need luminance for edge detection
 - Fine-grained detail only visible through luminance contrast
 - Legible text requires luminance contrast!
- Intrinsic perceptual ordering

Opponent color and color deficiency
- Perceptual processing before optic nerve
 - One achromatic luminance channel (L)
 - Edge detection through luminance contrast
 - 2 chromatic channels
 - Red-green (r/g) and yellow-blue (b/y)
 - “Color blind”: one axis has degraded acuity
 - 8% of men are red/green color deficient
- Color deficiency: Reduces color to 2 dimensions

Color spaces
- CIELUV good for computation
 - L*: intensity, perceptually linear luminance
 - a*: intensity, perceptually linear but non-monotonic
 - b*: intensity, poor for encoding
- HLS/HSV somewhat better for encoding
 - Hue: only pseudo-perceptual
 - Lightness (L) or value (V) + luminance or L*
- Luminance, hue, saturation
 - Good for encoding
 - But not standard graphics tools colorspace

Designing for color deficiency: Check with simulator
Normal
Deuteranope
Protanope
Tritanope

http://rehue.net

Designing for color deficiency: Avoid encoding by hue alone
- Redundantly encode
 - Vary luminance
 - Change shape

Relative judgements: Color & illumination
- Do they match?
- Oh no, that looks wrong!

Categorical color: Limited number of discriminable bins
- Human perception built on relative comparisons
 - Great if color contiguous
 - Surprisingly bad for absolute comparisons
- Noncontiguous small regions of color
 - Fewer bins than you want
 - Rule of thumb: 6-12 bins, including background and highlights

Color Encoding
- Encode
 - Manipulate
 - How?

Image courtesy of John McCann

Categorical vs ordered color
- Order can show magnitude
 - Luminance: how bright
 - Saturation: how colorful
- Categorical can show identity
 - Hue what color

Channels have different properties
- What they convey directly to perceptual system
 - How much they can convey: how many discriminable bins can we use?

Bezold Effect: Outlines matter
- Color constancy: simultaneous contrast effect

Relative judgements: Color & illumination
- Good vs. different
 - Image courtesy of John McCann

Decomposing color
- First rule of color: do not talk about color!
 - Color is confusing if treated as monolithic
- Decompose into three channels
 - Order can show magnitude
 - Luminance: how bright
 - Saturation: how colorful
 - Categorical can show identity
 - Hue, what color
- Channels have different properties
 - What they convey directly to perceptual system
 - How much they can convey: how many discriminable bins can we use?
Further reading, full

Further reading

Idiom: Semantic zooming
- **semantic zoom**
 - alternative to geometric zoom
 - resolution-aware layout adapts to available space
 - goal legibility at multiple scales
 - dramatic or subtle effects
 - visual encoding change
 - colored box
 - sparkline
 - simple line chart
 - full chart axes and tick marks

System: LiveRAC
- **semantic zoom**
 - alternative to geometric zoom
 - resolution-aware layout adapts to available space
 - goal legibility at multiple scales
 - dramatic or subtle effects
 - visual encoding change
 - colored box
 - sparkline
 - simple line chart
 - full chart axes and tick marks

Navigate: Reducing attributes
- **continuation of camera metaphor**
 - show only items matching specific value for given attribute alone
 - axis signal or inter-axis alignment
 - cut
 - show only items for side of plane from camera
 - project
 - show mathematics of image creation
 - orthographic (principal 3rd dimension)
 - perspective (transmogrifying camera line 3D information)

Rule of thumb: Responsiveness is required
- **visual feedback three rough categories**
 - 0-1 seconds: perceptual processing
 - 1 second: brief tasks
 - 1-2 seconds: simple tasks

Manipulate
- **Navigate**
 - Item Reduction
 - Attribute Reduction
 - Parent/Children
 - Full/Partial

Idiom: Semantic zooming
- **semantic zoom**
 - alternative to geometric zoom
 - resolution-aware layout adapts to available space
 - goal legibility at multiple scales
 - dramatic or subtle effects
 - visual encoding change
 - colored box
 - sparkline
 - simple line chart
 - full chart axes and tick marks

Navigate: Changing viewpoint/visibility
- **change viewpoint**
 - changes which items are visible within view
 - full-screen
 - pan/translate/scroll
 - move up/down/sideways

Idiom: Scrollytelling
- **how**: navigate page by scrolling (panning down)
- **why**: changes which items are visible within view
 - familiar & intuitive, from standard web browsing
 - linear (up & down) vs possible overload of click-based interface choices

Idiom: Animated transition + constrained navigation
- **example**: geographic map
 - simple zoom, only viewport changes, shapes preserved

Interaction benefits
- **interaction pros**
 - major advantage of computer-based vs paper-based visualization
 - visual feedback three rough categories
 - 0-1 seconds: perceptual processing
 - 1 second: brief tasks
 - 1-2 seconds: simple tasks

Navigate: Unconstrained vs constrained
- **unconstrained navigation**
 - easy to implement for designer
 - hard to control for user
 - easy to overshoot/undershoot
 - typically uses animated transitions

Idiom: Animated transition + constrained navigation
- **example**: icicle plot
 - transition into containing mark causes aspect ratio (shape) change

Navigate: Changing viewpoint/visibility
- **change viewpoint**
 - changes which items are visible within view
 - full-screen
 - pan/translate/scroll
 - move up/down/sideways
 - rotate/spin
 - typically in 3D
 - zoom in/out
 - perspective (foreshortening captures limited 3D information)
 - unusual channels: motion
 - visual encoding change
 - fluid task switching: different visual encodings support different tasks
 - contiguity: no interruptions
 - responsiveness is required
 - can provide useful additional detail on demand
 - render speed when item count is large (guaranteed frame rate)

Interaction benefits
- **interaction pros**
 - major advantage of computer-based vs paper-based visualization
 - visual feedback three rough categories
 - 0-1 seconds: perceptual processing
 - 1 second: brief tasks
 - 1-2 seconds: simple tasks
 - fluid task switching: different visual encodings support different tasks
 - animated transitions provide excellent support

Idiom: Scrollytelling
- **how**: navigate page by scrolling (panning down)
- **why**: changes which items are visible within view
 - familiar & intuitive, from standard web browsing
 - linear (up & down) vs possible overload of click-based interface choices

Navigate: Cartographic projections
- **project**: from 3D sphere surface to 2D plane
 - can only fully preserve 2 out of 3
 - angles conformal
 - area equal area
 - conformality/areas
 - added detail during transition
 - typically in 3D
 - zoom in/out
 - perspective (transmogrifying camera line 3D information)

Idiom: Animated transition + constrained navigation
- **example**: multilevel matrix views
 - add detail during transition
 - movie: http://www.win.tue.nl/vlvi/home/hans/matrix/Zoomin.avi
 - movie: http://www.win.tue.nl/vlvi/home/hans/matrix/Zoomout.avi
 - movie: http://www.win.tue.nl/vlvi/home/hans/matrix/Pan.avi

Idiom: Animated transition + constrained navigation
- **example**: multilevel matrix views
 - add detail during transition
 - movie: http://www.win.tue.nl/vlvi/home/hans/matrix/Zoomin.avi
 - movie: http://www.win.tue.nl/vlvi/home/hans/matrix/Zoomout.avi
 - movie: http://www.win.tue.nl/vlvi/home/hans/matrix/Pan.avi

Navigate: Changing viewpoint/visibility
- **change viewpoint**
 - changes which items are visible within view
 - full-screen
 - pan/translate/scroll
 - move up/down/sideways
 - rotate/spin
 - typically in 3D
 - zoom in/out
 - perspective (foreshortening captures limited 3D information)
 - unusual channels: motion
 - visual encoding change
 - fluid task switching: different visual encodings support different tasks
 - contiguity: no interruptions
 - responsiveness is required
 - can provide useful additional detail on demand
 - render speed when item count is large (guaranteed frame rate)

Navigate: Cartographic projections
- **project**: from 3D sphere surface to 2D plane
 - can only fully preserve 2 out of 3
 - angles conformal
 - area equal area
 - conformality/areas
 - added detail during transition
 - typically in 3D
 - zoom in/out
 - perspective (transmogrifying camera line 3D information)

Navigate: Scrollytelling
- **how**: navigate page by scrolling (panning down)
- **why**: changes which items are visible within view
 - familiar & intuitive, from standard web browsing
 - linear (up & down) vs possible overload of click-based interface choices

Idiom: Semantic zooming
- **semantic zoom**
 - alternative to geometric zoom
 - resolution-aware layout adapts to available space
 - goal legibility at multiple scales
 - dramatic or subtle effects
 - visual encoding change
 - colored box
 - sparkline
 - simple line chart
 - full chart axes and tick marks

Idiom: Animated transition + constrained navigation
- **example**: geographic map
 - simple zoom, only viewport changes, shapes preserved

Navigate: Reducing attributes
- **continuation of camera metaphor**
 - show only items matching specific value for given attribute alone
 - axis signal or inter-axis alignment
 - cut
 - show only items for side of plane from camera
 - project
 - show mathematics of image creation
 - orthographic (principal 3rd dimension)
 - perspective (transmogrifying camera line 3D information)

Rule of thumb: Responsiveness is required
- **visual feedback three rough categories**
 - 0-1 seconds: perceptual processing
 - 1 second: brief tasks
 - 1-2 seconds: simple tasks

Manipulate
- **Navigate**
 - Item Reduction
 - Attribute Reduction
 - Parent/Children
 - Full/Partial

Idiom: Scrollytelling
- **how**: navigate page by scrolling (panning down)
- **why**: changes which items are visible within view
 - familiar & intuitive, from standard web browsing
 - linear (up & down) vs possible overload of click-based interface choices

Navigate: Cartographic projections
- **project**: from 3D sphere surface to 2D plane
 - can only fully preserve 2 out of 3
 - angles conformal
 - area equal area
 - conformality/areas
 - added detail during transition
 - typically in 3D
 - zoom in/out
 - perspective (transmogrifying camera line 3D information)
Facet

Further reading

- MicroView.

Further reading, full

Linked views

- unidirectional vs bidirectional linking

Linked views: Multidirectional linking

- System: Buckets

Linked views: Multiform views

- System: PathFinder

Complex linked multiform views

- System: StratomeX

Flows: R/Shiny

Idiom: Overview-detail navigation

- encoding: same
- data: subset shared
- navigation: shared
- unidirectional linking
- special case: birds-eye map

Idiom: Overview-detail views

- encoding: same
- data: subset shared
- navigation: shared
- bidirectional linking
- special case: birds-eye map

Video: Visual Analysis of Historical Hotel Visitation Patterns

- System: Miscrosoft

Overview-detail

- multiscle: three viewing levels
- linked views
- dynamic filtering
- tooling processing (modern version p5.js.org)

Overview-detail

- unidirectional linking

Overview-detail

- unidirectional linking

Overview-detail

- unidirectional linking

Features

- linked data
- dynamic filtering
- tooling processing
- (modern version p5.js.org)
Reduce items and attributes

- **Reduce/increase:** inverses
- **Filter**
 - pros: straightforward and intuitive
 - cons: difficult to avoid losing signal
- **Aggregate**
 - combine filter, aggregate
 - reduce, change, facet

Idiom: cross filtering

- **Item filtering**
- **Coordinated views/controls combined**
- all-scanned histogram builders update when any ranges change

Idiom: histogram

- **Static item aggregation**
- **Task find distribution**
- **Data table**
- **Derived data**
 - new table: keys are bins, values are counts
 - bin size crucial
- **Pattern change dramatically depending on discretization**
- opportunity for interaction control bin size on the fly

Spatial aggregation

- **MAUP:** Modifiable Areal Problem
 - Gerrymandering (manipulating voting district boundaries) is only one example!
- some effects

Dimensionality reduction

- **Attribute aggregation**
 - derive low-dimensional target space from high-dimensional measured data
 - capture most of variance with minimal error

Idiom: hierarchical parallel coordinates

- **Dynamic item aggregation**
- **Task find distribution**
- **Data table**
- **Derived data**
- cluster with variable transparency line at mean, width by min/max values
- **Color by proximity in hierarchy**

Idiom: aggregation via hierarchical clustering (visible)

- **Attribute aggregation**
 - derive low-dimensional target space from high-dimensional measured space
 - capture most of variance with minimal error
 - use when you can't directly measure what you care about
 - random dimensionality of data compressed to be closer dimensionality of measurements
 - latent factors, hidden variables

Idiom: boxplot

- **Static item aggregation**
- **Task find distribution**
- **Data table**
- **Derived data**
 - 5-quantile attributes
 - medians, control line
 - lower and upper quartile boxes
 - lower and upper fences/whiskers

- values beyond these are outliers
- outliers beyond fence cutoffs explicitly shown

Idiom: smented widgets

- augmented widgets show information scent
- cues to show whether value in drilling down further or looking elsewhere
- **Concise use of space:** histogram on slider
Dimensionality vs attribute reduction

- vocab use in field is not consistent
 - dimension/attribute
 - attribute reduction: reduce set with filtering
 - includes orthographic projection
- dimensionality reduction: create smaller set of new dims/attrs
 - typically implies dimensional aggregation, not just filtering
 - vocab: projection/mapping

Dimensionality reduction & visualization

- why do people do DR?
 - improve performance of downstream algorithm
 - avoid overfitting
- look for meaning in scatterplots
- includes orthographic projection
- abstract tasks when visualizing DR data
 - synthetic dims created by algorithm
 - naming synthesized dims, mapping synthesized dims to original dims
 - clearing/dimensions, naming clusters, matching clusters and classes

Dimension-oriented tasks

- naming synthesized dims: inspect data represented by lowD points

Cluster-oriented tasks

- verifying, naming, matching to classes

VDA with DR example: nonlinear vs linear

- DR for computer graphics reflectance model
 - goal: simulate how light bounces off materials to make realistic pictures
 - many techniques proposed:
 - many literatures: visualization, machine learning, optimization, psychology, ...
 - principal components analysis (PCA)
 - first try: PCA (linear)
 - result: error falls off sharply after ~45 dimensions
 - many techniques: t-SNE, MDS (multidimensional scaling), charting, tmap, LLE, ...
 - mNE: excellent for clusters
 - but some trickiness remains: http://dl.isi.edu/2014/mnead-paper/
 - MDS: confusing, entire family of techniques, both linear and nonlinear
 - minimize stress or strain metrics
 - early formulations equivalent to PCA

Capturing & using material reflectance

- reflectance measurement: interaction of light with real materials (spheres)
- result: 104 high-res images of material
 - each image 4M pixels
 - goal: image synthesis
 - simply simulate new materials
 - need for more concise model
 - 104 materials * 4M pixels = 400M dims

Understanding synthetic dimensions

- look for meaning in scatterplots
 - synthetic dims created by algorithm but named by human analysts
 - points represent real-world images (spheres)
 - people inspect images corresponding to points to decide if sets could have meaningful name
 - cross-check meaning
 - arrows show simulated images (teaspoons) made from model
 - check if those match dimension semantics

Further reading

 - Chap 13: Reduce Items and Attributes
Ch 14. Embed: Focus+Context

- combine information within single view
- elide
 - selectively filter and aggregate
 - superimpose layer
 - local lens
 - distortion design choices
 - region shape: radial, rectilinear, complex
 - how many regions: one, many
 - region extent: local, global
 - interaction metaphor

Ch 14. Embed: Focus+Context

Ch 15. Analysis Case Studies

- table: draw pixels, sorted by relevance
- group by attribute or partition by attribute into multiple views

VisDB Analysis
- Visual Encoding
 - What: Data: Table (clustering with an attribute, query wording example)
 - What Derived: Derived network of nodes and links (roll-up into two chosen attributes)
 - Why: Tasks
 - How: Encode
 - How: Facet
 - How: Paste
 - How: Reduce
 - How: Filter

Frequency
- Scale: Nodes by edge frequency

HCE Analysis
- Hierarchical Clustering Explorer
 - heatmap, dendrogram
 - multiple views

PivotGraph Analysis
- PivotGraph
 - derived rollup network
 - data
 - multi-level network
 - node: word
 - link: words used in same dictionary definition

Design Study Methodology
- Reflections from the Trenches and from the Stacks
- Michael Sedlmair
- Tamara Munzner
- Miriah Meyer
- Michael Sedlmair

Analysis example: Constellation
- data
 - multi-level network
 - node: word
 - link: words used in same dictionary definition
 - subgraph for each definition

Using space: Constellation
- edge crossings (cannot easily minimize instances, since position constrained by spatial encoding)
- visual encoding

Constellation Analysis
- System: Constellation
 - Data: Three-level network of paths, subgraphs (definitions), and nodes (word-senses)
 - Why: Tasks: Discoverability, know and locate types of paths, identity and compare
 - How: Encode: Complete and check links among different spatial positions for plausibility, vertical spatial position for order within path, color links by type
 - How: Manipulate
 - How: Reduce
 - Scale

HCE
- rank by feature idiom
 - 1D list
 - 2D matrix

PivotGraph
- derived rollup network
- data
- multi-level network
- node: word
- link: words used in same dictionary definition

Using space: Constellation
- edge crossings (cannot easily minimize instances, since position constrained by spatial encoding)
- visual encoding

Constellation Analysis
- System: Constellation
 - Data: Three-level network of paths, subgraphs (definitions), and nodes (word-senses)
 - Why: Tasks: Discoverability, know and locate types of paths, identity and compare
 - How: Encode: Complete and check links among different spatial positions for plausibility, vertical spatial position for order within path, color links by type
 - How: Manipulate
 - How: Reduce
 - Scale

HCE
- rank by feature idiom
 - 1D list
 - 2D matrix

PivotGraph
- derived rollup network
- data
- multi-level network
- node: word
- link: words used in same dictionary definition

Using space: Constellation
- edge crossings (cannot easily minimize instances, since position constrained by spatial encoding)
- visual encoding

Constellation Analysis
- System: Constellation
 - Data: Three-level network of paths, subgraphs (definitions), and nodes (word-senses)
 - Why: Tasks: Discoverability, know and locate types of paths, identity and compare
 - How: Encode: Complete and check links among different spatial positions for plausibility, vertical spatial position for order within path, color links by type
 - How: Manipulate
 - How: Reduce
 - Scale

HCE
- rank by feature idiom
 - 1D list
 - 2D matrix

PivotGraph
- derived rollup network
- data
- multi-level network
- node: word
- link: words used in same dictionary definition

Using space: Constellation
- edge crossings (cannot easily minimize instances, since position constrained by spatial encoding)
- visual encoding

Constellation Analysis
- System: Constellation
 - Data: Three-level network of paths, subgraphs (definitions), and nodes (word-senses)
 - Why: Tasks: Discoverability, know and locate types of paths, identity and compare
 - How: Encode: Complete and check links among different spatial positions for plausibility, vertical spatial position for order within path, color links by type
 - How: Manipulate
 - How: Reduce
 - Scale

HCE
- rank by feature idiom
 - 1D list
 - 2D matrix

PivotGraph
- derived rollup network
- data
- multi-level network
- node: word
- link: words used in same dictionary definition

Using space: Constellation
- edge crossings (cannot easily minimize instances, since position constrained by spatial encoding)
- visual encoding

Constellation Analysis
- System: Constellation
 - Data: Three-level network of paths, subgraphs (definitions), and nodes (word-senses)
 - Why: Tasks: Discoverability, know and locate types of paths, identity and compare
 - How: Encode: Complete and check links among different spatial positions for plausibility, vertical spatial position for order within path, color links by type
 - How: Manipulate
 - How: Reduce
 - Scale

HCE
- rank by feature idiom
 - 1D list
 - 2D matrix

PivotGraph
- derived rollup network
- data
- multi-level network
- node: word
- link: words used in same dictionary definition

Using space: Constellation
- edge crossings (cannot easily minimize instances, since position constrained by spatial encoding)
- visual encoding

Constellation Analysis
- System: Constellation
 - Data: Three-level network of paths, subgraphs (definitions), and nodes (word-senses)
 - Why: Tasks: Discoverability, know and locate types of paths, identity and compare
 - How: Encode: Complete and check links among different spatial positions for plausibility, vertical spatial position for order within path, color links by type
 - How: Manipulate
 - How: Reduce
 - Scale

HCE
- rank by feature idiom
 - 1D list
 - 2D matrix

PivotGraph
- derived rollup network
- data
- multi-level network
- node: word
- link: words used in same dictionary definition

Using space: Constellation
- edge crossings (cannot easily minimize instances, since position constrained by spatial encoding)
- visual encoding

Constellation Analysis
- System: Constellation
 - Data: Three-level network of paths, subgraphs (definitions), and nodes (word-senses)
 - Why: Tasks: Discoverability, know and locate types of paths, identity and compare
 - How: Encode: Complete and check links among different spatial positions for plausibility, vertical spatial position for order within path, color links by type
 - How: Manipulate
 - How: Reduce
 - Scale

HCE
- rank by feature idiom
 - 1D list
 - 2D matrix

PivotGraph
- derived rollup network
- data
- multi-level network
- node: word
- link: words used in same dictionary definition

Using space: Constellation
- edge crossings (cannot easily minimize instances, since position constrained by spatial encoding)
- visual encoding

Constellation Analysis
- System: Constellation
 - Data: Three-level network of paths, subgraphs (definitions), and nodes (word-senses)
 - Why: Tasks: Discoverability, know and locate types of paths, identity and compare
 - How: Encode: Complete and check links among different spatial positions for plausibility, vertical spatial position for order within path, color links by type
 - How: Manipulate
 - How: Reduce
 - Scale
Methodology for problem-driven work

- definitions
- 9-stage framework
- 32 pitfalls & how to avoid them
- comparison to related methodologies

9-stage framework learning, winnowing, casting, designing, implementing, deploying, reflecting, iterative

Design study methodology: 32 pitfalls

- and how to avoid them

<table>
<thead>
<tr>
<th>Pitfall</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF-1</td>
<td>Premature advance—jumping forward too fast</td>
</tr>
<tr>
<td>PF-2</td>
<td>Premature setup—subjective knowledge of vs. literature</td>
</tr>
<tr>
<td>PF-3</td>
<td>Premature commitment—commitments that are too tight</td>
</tr>
<tr>
<td>PF-4</td>
<td>Prevent too much too fast</td>
</tr>
<tr>
<td>PF-5</td>
<td>Insufficient time available from potential collaborators</td>
</tr>
<tr>
<td>PF-6</td>
<td>No need for visualization; problem can be automated</td>
</tr>
<tr>
<td>PF-7</td>
<td>Research expertise does not match domain problem</td>
</tr>
<tr>
<td>PF-8</td>
<td>No need for research engineering vs. research project</td>
</tr>
<tr>
<td>PF-9</td>
<td>No need for change; existing tools are good enough</td>
</tr>
</tbody>
</table>

Design study methodology: definitions

- 9-stage framework (Precondition, Conceptualization, Core, Analysis)

Considers

- interesting problem
- have data
- have time
- have need
- are you a user?

Roles

- collaborator
- user

Collaborator winnowing

- initial conversation
- further meetings
- prototyping
Design study methodology: 32 pitfalls

PITFALL

Premature Design Commitment

Of course they need the cool technique I built last year!

Example from the Trenches

Premature Collaboration!

- Fellow tool builders
- Data promised

Horse Race vs. Music Debut

technique-driven problem-driven

Must be first!

Am I ready?

“writing is research”

[Wolcott: Writing up qualitative research, 2009]
Cardinality
- Marshall: 68 cities * 40 years * 4 crime types = 10,880
- Wine: 130K * 4 = 650,000

Reflections from the stacks: Wholesale adoption inappropriate
- ethnography
- rapid, goal-directed fieldwork
- grounded theory
- not empty slate vis-a-vis background is key
- action research
- aligned
- intervention as goal
- transferability not reproducibility
- personal involvement is key
- opposition
- translation of participant concepts into visualization language
- researcher need not facilitate design
- art-directed vs vis concern: participants as writers, adversarial to status quo, postmodernity...

Algebraic Process for Visualization Design
- which mathematical structures in data are preserved and reflected in vis
- invariance violation: single dataset, many visualizations
- unambiguity violation: many datasets, same vis
- correspondence violation: doesn’t see change of data in vis
- misreader
- match mathematical structures in data with visual perception
- we can X the data; can we Y the image?
- are important data changes well-matched with obvious visual changes?

Next Steps
- this approach is not the only way to analyze visualizations!
- one specific framework intended to help you think
- other frameworks support different ways of thinking
- following: one interesting example

Visual Design Process In Depth: Dear Data
- data: room occupancy rates
- 1 room
- occupancy measured every 5 min, duration 1 day
- task: characterize space usage patterns
- design
- propose idioms (visual encoding, interaction)
- justify idiom choice

Cardinality
- Marshall: 68 cities * 40 years * 4 crime types = 10,880
- Wine: 130K * 4 = 650,000
- spatial (hierarchical), quantitative, categorical, free-form text

Scenario
- data: room occupancy rates
- 1 room
- occupancy measured every 5 min, duration 1 day
- task: characterize space usage patterns
- design
- propose idioms (visual encoding, interaction)
- justify idiom choice

In-Class Exercise
- http://www.makeovermonday.co.uk/blog/

In-Class Exercise
- http://www.datasketch.es/

Scenario
- what’s the cardinality of the data?
- is a single static chart good enough?
- should you derive any useful additional data?

What-Why-How Analysis
- this approach is not the only way to analyze visualizations!
- one specific framework intended to help you think
- other frameworks support different ways of thinking
- following: one interesting example

Visual Design Process In Depth: Data Sketches
- data: room occupancy rates
- 1 building: 200 rooms across 4 floors
- measured every 5 min, duration 1 day
- task: characterize space usage patterns
- design
- propose & justify idioms

Scenario
- data: room occupancy rates in building
- 1 building: 200 rooms across 4 floors
- measured every 5 min, duration 1 day
- time series + floor plans
- task: characterize space usage patterns
- design
- propose & justify idioms
Consider
• what's the cardinality of the data?
• is a single static chart good enough?
• should you derive any useful additional data?
• how to handle multi-scale space and multi-scale time?
• how to handle multi-scale space and multi-scale time?
• can you normalize the data? should you - always vs on demand?

Scenario
• data: room occupancy rates in building
 – 1 building: 200 rooms across 4 floors
 – measured every 5 min, duration 1 year
 – time series + floor plus + room sizes
 – task: characterize space usage patterns
 – trends, outliers
 – design
 – propose & justify idioms

Consider
• what's the cardinality of the data?
• is a single static chart good enough?
• should you derive any useful additional data?
• what are trade-offs between
 – filtering to see one chart at a time
 – showing side by side with small multiples
 – superimposing on top of each other
• multi-scale structure to exploit: aggregate, zoom, slice/dice, filter?
• can you normalize the data? should you - always vs on demand?
• how to handle multi-scale space and multi-scale time?
• is spatial information germane or extraneous?
• should you normalize the data? should you - always vs on demand?
• how to handle multi-scale space and multi-scale time?
• can you derive any useful additional data?
• what are trade-offs between
 – filtering to see one chart at a time
 – showing side by side with small multiples
 – superimposing on top of each other
• multi-scale structure to exploit: aggregate, zoom, slice/dice, filter?
• can you normalize the data? should you - always vs on demand?
• how to handle multi-scale space and multi-scale time?

Scenario
• data: many metrics across many machines
 – 100 machines, belonging to 20 companies
 – 4 metrics measured every 5 min, duration 1 month
 – CPU, memory, disk I/O, network traffic
 – time series + company name + company location (country)
 – task: forensic analysis to determine possible causes of crashes
 – design
 – propose & justify idioms