Visualization Analysis \＆Design

Tamara Munzner

Department of Computer Science
University of British Columbia University of British Columbia
Guest Lecture， 5 TAA 545
Oct 192017 ，Vancouver BC

Visualization（vis）defined \＆motivated
Computer－based visualization systems provide visual representations of datasets
designed to help people carry out tasks more effectively． Visualization is suitable when there is a need to augment human capabiilites
rather than replace people with computational decision－making methods．
－human in the loop needs the details
－doesn＇t know exactly what questions to ask in advance
Ongterm exploratory analysis
－speed up through human－in
－speed up through human－in－the－loop visual data analysis
－presentation of known results
－stepping stone towards autom
－stepping stone towards automation：refining，trustbuilding
intended task，measurable definitions of effectiveness

Why is validation difficult？		
－solution：use methods from different fields at each level		
anthropology ethnography	2．Domain situation Observe target users using existing tools Data／task abstraction	$T_{\substack{\text { problem-driven } \\ \text { work }}}$
design	（1）Visul encodinginteraction iliom	\downarrow
computer science		technique－driven work
cognitive psychology	Analyze results qualitatively Measure human time with lab experiment（lab study）	
anthropologyl ethnography	Observe target users after deployment（field study） Measure adoption	

Actions：Analyze			
－consume	\oplus Analyze		
－discover vs present	\rightarrow Consume		
－classic split	\rightarrow Brcourer	\rightarrow Present	\rightarrow Eno
－aka explore vs explain	人．ulli．	入	－
－enjoy	\cdots		
－newcomer	\rightarrow Produce		
－aka casua，social	\rightarrow Anooate	\rightarrow R	\rightarrow Derive
－produce			
－annotate，record－derive			
－derive			
－crucial design choice			

Why：Targets

Θ Network Data
\rightarrow Topology $\underset{\rightarrow \text { Paths }}{\underset{\sim}{*}}: \because 0$
Θ Spatial Data
\rightarrow Shape
，
don＇t just draw what you＇re given！
－don＇t just draw what you＇re given！
－decide what the right thing to show is
－decide what the right thing to show is
－create it with a series of transformations from the original dataset
－draw that
－one of the four major strategies for handling complexity

$$
\Theta \text { All Data }
$$

Nested model：Four levels of vis design
domain situation
－who are the target users？
abstraction
－translate from specifics of domain to vocabulary of vis
－translate from specifics of domain to
\cdot what is shown？data abstraction －what is shown？data abstraction
－why is the user looking at it？task abstraction idiom
－how is it shown
－visual encoding idiom：how to draw
－interaction idiom：how to manipulate
algorithm
－efficient computation
－efficient computation

Why is validation difficult？
－different ways to get it wrong at each level

```
& Domin situation
    O Datatrask abstraction
    (-)V:sual encoding/interaction idion
    |m Algorithm
```


Actions：Analyze，Query	（ Analye		
－analyze	\rightarrow Consume \rightarrow Discover	\rightarrow Present	\rightarrow Ejoy
－consume			
－discover vs present －aka exlore vs explain	$\frac{. . l l l l}{I}$	\checkmark illill	－
－enjoy	\rightarrow Produce		
${ }^{\text {－}}$－produce casal．social ${ }^{\text {a }}$	Anotate		Defive
－annotate，record，derive	8	Lom	旺請

${ }^{\text {－annotate，record，derive }}$
－query
－how much data matters？
－one，some，all
independent choi
Definitions：Marks and channels
How to encode：Arrange space，map channels

Visual encoding

－as combination of marks and channels			

Channels

Channels：Expressiveness ty Magnitude Channels：Ordered Attributes Position on common scale \qquad	pes and effectiveness rankings \square
Length（10 Stie）	Motion 〕．．－
1／＝	Shape＋－－－
Area（20 size）－－■ ■	
30 positio	－expressiveness principle
Colorluminane	－effectiveness principle
	－encode most important atrributes w
1.	highest ranked channels
（30 size）．．．n	－spatial position ranks high for both

Separability vs．Integrality

Position ＋Hue（Color）	$\begin{aligned} & \text { Size } \\ & \text { + Hue (Color) } \end{aligned}$	$\begin{aligned} & \text { Width } \\ & \text { + Height } \end{aligned}$	$\begin{aligned} & \text { Red } \\ & + \text { + Green } \end{aligned}$
	0^{\bullet}	－ 1	
Fully separable	Some interference	Some／significant interference	Major interference
2 groups each	2 groups each	3 groups total： integral area	4 groups total integral hue

－channels have different properties
－what they convey directly to perceptual system
－what they convey directly to perceptual system
－how much they can convey：how many discriminable bins can we use？
Categorical color：limited
－human perception built
on relative comparisons on relative comparisons
－great if color contiguous －great if color contiguo
－surprisingly bad for －surprisisiny bad for
absolute comparisons －noncontiguous small regions of color
－fewer bins than you want －rule of thumb： $6-12$ bins，
including background and highlights

Channels：Matching Types

\bigcirc Magntude Chamels： 0 rde	ed Atributes	© 1dentity Chamesis：Categoricil Atributes
Position on common		Spatairegion $\quad \mathrm{\square}$ ■
on on unaligned scale	\because	Colortue－－－－
Length（10 Size）	－－	Motion $\quad . .1$
Titangle	1／2	Shape $+\bullet$－${ }_{\text {a }}$
Area（20 size）	－	
${ }^{\text {Depth }}$（30 postion）	$\rightarrow \cdot \longmapsto$.	－expressiveness principle
color	ロロロロ ］	－effectiveness principle
Colorsatuation	뭍․․ ${ }^{\text {a }}$	
Cunatur	（1））	highest ranked channels
Volume（3D size）	．．．．．${ }^{\text {a }}$	

Discriminability：How many usable steps？ －must be sufficient for number of
attribute levels to show attribute levels to show linewidth：few bins but salient

Ordered color：Rainbow is poor default
－http：／／www．colorbrewer2．org
－saturation and area example：size affects salience！

$\stackrel{\text {－problems }}{\text {－perceptually unordered }}$
－perceptualy unordered
－perceptually nonlinear
－benefits
－fine－－grined structure visible
and nameable

Idiom：line chart／dot plot －one key，one value －data － 2 quant attribs －mark：points －line connection marks between them －channels －aligned lengths to express quant value －separated and ordered by key attrib into horizontal regions －task －find trend connection marks emphasize ordering of items along key axis by explicitly showing relationship between one item and the next －scalability －hundreds of key levels，hundreds of value levels	Choosing bar vs line charts －depends on type of key attrib －bar charts if categorical －line charts if ordered －do not use line charts for categorical key attribs －violates expressiveness principle	$2 \text { Keys }$	Idiom：heatmap －two keys，one value －data － 2 categ atrribs（gene，experimental condition） －I quant attrib（expression levels） －marks：area －separate and align in 2D matrix －indexed by 2 categorical attributes $\rightarrow 1$ Key －channels \square －color by quant attrib －（ordered diverging colormap） －task －find clusters，outliers －scalability － 1 M items， 100 s of categ levels，~ 10 quant attrib levels
Θ Axis Orientation	Idioms：pie chart，polar area chart －pie chart －area marks with angle channel －accuracy：angle／area less accurate than line length －arclength also less accurate than line length －polar area chart －area marks with length channel －more direct analog to bar charts －data －I categ key attrib，I quant value attrib －task －part－to－whole judgements	Idioms：normalized stacked bar chart －task －part－to－whole judgements －normalized stacked bar chart －stacked bar chart，normalized to full vert height －single stacked bar equivalent to full pie －high information density：requires narrow rectangle －pie chart －information density：requires large circle	Idiom：glyphmaps
Arrange spatial data \oplus Use Given \rightarrow Geometry \rightarrow Geographic \rightarrow Other Derived \rightarrow Spatial Fields \rightarrow Scalar Fields（one value per cell） \rightarrow Isocontours \rightarrow Direct Volume Rendering \rightarrow Vector and Tensor Fields（many values per cell） \rightarrow Flow Glyphs（local） \rightarrow Geometric（sparse seeds） \rightarrow Textures（dense seeds） トイヘスス \rightarrow Features（globally derived）	Idiom：choropleth map －use given spatial data －when central task is understanding spatial relationships －data －geographic geometry －table with I quant attribute per region －encoding －use given geometry for area mark boundaries －sequential segmented colormap［more later］ －（geographic heat map）	Population maps trickiness －beware！ －absolute vs relative again －population density vs per capita －investigate with Ben Jones Tableau Public demo －http：／／public．tableau．com／profile／ ben．jones\＃！！／vizhome／Pop／sFin／PopVsFin Are Maps of Financial Variables just Population Maps？ －yes，unless you look at per capita （relative）numbers	Idiom：Bayesian surprise maps －use models of expectations to highlight surprising values －confounds（population）and variance（sparsity） ［Surprise！Bayesian Weighting for De－Biasing Thematic Maps．Correll and Heer．Proc InfoVis 2016］ https：／／medium．com／＠uwdata／surprise－maps－showing－the－unexpected－e92b67398865 https：／／idl．cs．washington．edu／papers／surprise－maps／
Arrange networks and trees Node－Link Diagrams \checkmark NETWORKS \downarrow TREES Adjacency Matrix Derived Table \checkmark NETWORKS \checkmark TREES Θ Enclosure Containment Marks \times NETWORKS \checkmark TREES ㄸロㅁ \square	Idiom：force－directed placement －visual encoding －link connection marks，node point marks －considerations －spatial position：no meaning directly encoded －left free to minimize crossings －proximity semantics？ －sometimes meaningful －sometimes arbitrary，artifact of layout algorithm －tension with length －long edges more visually salient than short －tasks －explore topology；locate paths，clusters －scalability －node／edge density $\mathrm{E}<4 \mathrm{~N}$	Idiom：adjacency matrix view －data：network －transform into same data／encoding as heatmap －derived data：table from network －I quant attrib －weighted edge between nodes -2 categ attribs：node list $\times 2$ －visual encoding －cell shows presence／absence of edge －scalability －IK nodes，IM edges	Connection vs．adjacency comparison －adjacency matrix strengths －predictability，scalability，supports reordering －some topology tasks trainable －node－link diagram strengths －topology understanding，path tracing －intuitive，no training needed －empirical study －node－link best for small networks －matrix best for large networks －if tasks don＇t involve topological strucure！ ［On the readability of graphs using node－link and matrix－based representations：a controlled experiment and statistical analysis． Ghoniem，Fekete，and Castagliola．Information Visualization 4：2 （2005），I／4－135．］

- marks as links (vs. nodes)
-common case in network drawing
-ID case: connection
- ID case: connection
- ex:all node-link diagra
- emphasizes topology, path tracing
- networks and trees
-2D case: containment
- ex:all treemap variants - emphasizes
coding
- only trees
only trees

More Information
- this talk
 -20% promo code for booktebook combo:
HVN17 HVNIT
-illustrations: Eamonn Maguire
papers, videos, software, talks, courses etp:///www.cs.ubc.calgrouplinifovis http://www.cs.ubc.ca/temn

