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Defining visualization (vis)
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Computer-based visualization systems provide visual representations of datasets 
designed to help people carry out tasks more effectively.

Why?...

Why have a human in the loop?

• don’t need vis when fully automatic solution exists and is trusted 

• many analysis problems ill-specified
– don’t know exactly what questions to ask in advance

• possibilities
– long-term use for end users (e.g. exploratory analysis of scientific data)
– presentation of known results 
– stepping stone to better understanding of requirements before developing models
– help developers of automatic solution refine/debug, determine parameters
– help end users of automatic solutions verify, build trust 3

Computer-based visualization systems provide visual representations of datasets 
designed to help people carry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities 
rather than replace people with computational decision-making methods. 

Why use an external representation?

• external representation: replace cognition with perception
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Computer-based visualization systems provide visual representations of datasets 
designed to help people carry out tasks more effectively.

[Cerebral: Visualizing Multiple Experimental Conditions on a Graph 
with Biological Context. Barsky, Munzner, Gardy, and Kincaid. IEEE 
TVCG (Proc. InfoVis) 14(6):1253-1260, 2008.]

Why represent all the data?

• summaries lose information, details matter 
– confirm expected and find unexpected patterns
– assess validity of statistical model
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Identical statisticsIdentical statistics
x mean 9
x variance 10
y mean 8
y variance 4
x/y correlation 1

 Anscombe’s Quartet

Computer-based visualization systems provide visual representations of datasets 
designed to help people carry out tasks more effectively.

Why are there resource limitations?

• computational limits
– processing time
– system memory

• human limits
– human attention and memory

• display limits
– pixels are precious resource, the most constrained resource
– information density: ratio of space used to encode info vs unused whitespace

• tradeoff between clutter and wasting space, find sweet spot between dense and sparse
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Vis designers must take into account three very different kinds of resource limitations: 
those of computers, of humans, and of displays. 

Analysis framework: Four levels, three questions

• domain situation
– who are the target users?

• abstraction
– translate from specifics of domain to vocabulary of vis
• what is shown? data abstraction
• why is the user looking at it? task abstraction

• idiom
• how is it shown?

• visual encoding idiom: how to draw

• interaction idiom: how to manipulate

• algorithm
– efficient computation
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algorithm
idiom

abstraction

domain

[A Nested Model of Visualization Design and Validation.

Munzner.  IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009). ]

algorithm

idiom

abstraction

domain

[A Multi-Level Typology of Abstract Visualization Tasks

Brehmer and Munzner.  IEEE TVCG 19(12):2376-2385, 2013 (Proc. InfoVis 2013). ]
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• mismatch: cannot show idiom good with system timings
• mismatch: cannot show abstraction good with lab study

Validation methods from different fields for each level

Domain situation
Observe target users using existing tools

Visual encoding/interaction idiom
Justify design with respect to alternatives

Algorithm
Measure system time/memory
Analyze computational complexity

Observe target users after deployment ( )

Measure adoption

Analyze results qualitatively
Measure human time with lab experiment (lab study)

Data/task abstraction

computer 
science

design

cognitive 
psychology

anthropology/
ethnography

anthropology/
ethnography

Why analyze?

• imposes a structure on huge 
design space
– scaffold to help you think 

systematically about choices
– analyzing existing as stepping stone 

to designing new
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[SpaceTree: Supporting Exploration in Large 
Node Link Tree, Design Evolution and Empirical 
Evaluation. Grosjean, Plaisant, and Bederson. 
Proc. InfoVis 2002, p 57–64.]

SpaceTree

[TreeJuxtaposer: Scalable Tree Comparison Using Focus
+Context With Guaranteed Visibility. ACM Trans. on 
Graphics (Proc. SIGGRAPH) 22:453– 462, 2003.]

TreeJuxtaposer
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Why?

How?

What?

Dataset Availability

Static Dynamic

Dataset and data types
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Tables
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• {action, target} pairs
– discover distribution

– compare trends

– locate outliers

– browse topology

Trends

Actions

Analyze

Search

Query

Why?

All Data

Outliers Features

Attributes

One Many
Distribution Dependency Correlation Similarity

Network Data

Spatial Data
Shape

Topology

Paths

Extremes

Consume
Present EnjoyDiscover

Produce
Annotate Record Derive

Identify Compare Summarize

tag

Target known Target unknown

Location 
known
Location 
unknown

Lookup

Locate

Browse

Explore

Targets

Why?

How?

What?
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Actions 1: Analyze
• consume

–discover vs present
• classic split
• aka explore vs explain

–enjoy
• newcomer
• aka casual, social 

• produce
–annotate, record
–derive

• crucial design choice

Analyze

Consume
Present EnjoyDiscover

Produce
Annotate Record Derive

tag
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Actions II: Search

• what does user know?
– target, location

Search

Target known Target unknown

Location 
known

Location 
unknown

Lookup

Locate

Browse

Explore
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Actions III: Query

• what does user know?
– target, location

• how much of the data 
matters?
– one, some, all

Search

Query

Identify Compare Summarize

Target known Target unknown

Location 
known

Location 
unknown

Lookup

Locate

Browse

Explore

Targets 
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Trends

All Data

Outliers Features

Attributes

One Many
Distribution Dependency Correlation Similarity

Extremes

Network Data

Spatial Data
Shape

Topology

Paths
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from categorical and ordered 
attributes
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How to handle complexity: 3 more strategies
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Manipulate Facet Reduce

Change

Select

Navigate

Juxtapose

Partition

Superimpose

Filter

Aggregate

Embed

Derive

+ 1 previous

• change view over time
• facet across multiple 

views
• reduce items/attributes 

within single view
• derive new data to 

show within view

How to handle complexity: 3 more strategies
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Manipulate Facet Reduce

Change

Select

Navigate

Juxtapose

Partition

Superimpose

Filter

Aggregate

Embed

Derive

+ 1 previous

• change over time
- most obvious & flexible 

of the 4 strategies

Idiom: Animated transitions
• smooth transition from one state to another

– alternative to jump cuts
– support for item tracking when amount of change is limited 

• example: multilevel matrix views
– scope of what is shown narrows down

• middle block stretches to fill space, additional structure appears within
• other blocks squish down to increasingly aggregated representations

21
[Using Multilevel Call Matrices in Large Software Projects. van Ham. Proc. IEEE Symp. Information Visualization (InfoVis), pp. 227–232, 2003.]

Facet
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Juxtapose

Partition

Superimpose

Coordinate Multiple Side By Side Views

Share Encoding: Same/Di!erent

Share Data: All/Subset/None

Share Navigation

Linked Highlighting

How to handle complexity: 3 more strategies
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Manipulate Facet Reduce

Change

Select

Navigate

Juxtapose

Partition

Superimpose

Filter

Aggregate

Embed

Derive

+ 1 previous

• facet data across 
multiple views

Idiom: Linked highlighting
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System: EDV
• see how regions 

contiguous in one view 
are distributed within 
another
– powerful and pervasive 

interaction idiom

• encoding: different
–multiform

• data: all shared

[Visual Exploration of Large Structured Datasets. Wills. Proc. New Techniques 
and Trends in Statistics (NTTS), pp. 237–246. IOS Press, 1995.]

Idiom: bird’s-eye maps
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• encoding: same
• data: subset shared
• navigation: shared

– bidirectional linking

• differences
– viewpoint
– (size)

• overview-detail

System: Google Maps

[A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. 
Cockburn, Karlson, and Bederson.  ACM Computing Surveys 41:1 (2008), 
1–31.]

Idiom: Small multiples
• encoding: same
• data: none shared

– different attributes for 
node colors

– (same network layout)

• navigation: shared
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System: Cerebral

[Cerebral: Visualizing Multiple Experimental Conditions on a Graph with Biological Context. Barsky, Munzner, Gardy, and Kincaid. IEEE Trans. 
Visualization and Computer Graphics (Proc. InfoVis 2008) 14:6 (2008), 1253–1260.]

Coordinate views: Design choice interaction
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All Subset

Same

Multiform

Multiform, 
Overview/

Detail

None

Redundant

No Linkage

Small Multiples

Overview/
Detail

• why juxtapose views?
– benefits: eyes vs memory

• lower cognitive load to move eyes between 2 views than remembering previous state with 
single changing view

– costs: display area, 2 views side by side each have only half the area of one view

Partition into views
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• how to divide data between views
– encodes association between items 

using spatial proximity 
– major implications for what patterns 

are visible
– split according to attributes

• design choices
– how many splits

• all the way down: one mark per region?
• stop earlier, for more complex structure 

within region?

– order in which attribs used to split
– how many views

Partition into Side-by-Side Views

Partitioning: List alignment
• single bar chart with grouped bars

– split by state into regions
• complex glyph within each region showing all ages

– compare: easy within state, hard across ages

• small-multiple bar charts
– split by age into regions

• one chart per region

– compare: easy within age, harder 
across states
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Partitioning: Recursive subdivision

• split by type
• then by neighborhood
• then time

– years as rows
– months as columns

30
[Configuring Hierarchical Layouts to Address Research Questions. Slingsby, Dykes, and Wood.  IEEE Transactions on Visualization and Computer Graphics 
(Proc. InfoVis 2009) 15:6 (2009), 977–984.]

System: HIVE Partitioning: Recursive subdivision

• switch order of splits
– neighborhood then type

• very different patterns

31
[Configuring Hierarchical Layouts to Address Research Questions. Slingsby, Dykes, and Wood.  IEEE Transactions on Visualization and Computer Graphics 
(Proc. InfoVis 2009) 15:6 (2009), 977–984.]

System: HIVE Partitioning: Recursive subdivision

• different encoding for 
second-level regions
– choropleth maps

32
[Configuring Hierarchical Layouts to Address Research Questions. Slingsby, Dykes, and Wood.  IEEE Transactions on Visualization and Computer Graphics 
(Proc. InfoVis 2009) 15:6 (2009), 977–984.]

System: HIVE



How to handle complexity: 3 more strategies
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Manipulate Facet Reduce

Change

Select

Navigate

Juxtapose

Partition

Superimpose

Filter

Aggregate

Embed

Derive

+ 1 previous

• reduce what is shown 
within single view

Reduce items and attributes
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• reduce/increase: inverses
• filter

– pro: straightforward and intuitive
• to understand and compute

– con: out of sight, out of mind

• aggregation
– pro: inform about whole set
– con: difficult to avoid losing signal 

• not mutually exclusive
– combine filter, aggregate
– combine reduce, facet, change, derive

Reduce

Filter

Aggregate

Embed

Reducing Items and Attributes

Filter
Items

Attributes

Aggregate

Items

Attributes

Idiom: boxplot
• static item aggregation
• task: find distribution
• data: table
• derived data

– 5 quant attribs
• median: central line
• lower and upper quartile: boxes
• lower upper fences: whiskers

– values beyond which items are outliers

– outliers beyond fence cutoffs explicitly shown
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pod, and the rug plot looks like the seeds within. Kampstra (2008) also suggests a way of comparing two

groups more easily: use the left and right sides of the bean to display different distributions. A related idea

is the raindrop plot (Barrowman and Myers, 2003), but its focus is on the display of error distributions from

complex models.

Figure 4 demonstrates these density boxplots applied to 100 numbers drawn from each of four distribu-

tions with mean 0 and standard deviation 1: a standard normal, a skew-right distribution (Johnson distri-

bution with skewness 2.2 and kurtosis 13), a leptikurtic distribution (Johnson distribution with skewness 0

and kurtosis 20) and a bimodal distribution (two normals with mean -0.95 and 0.95 and standard devia-

tion 0.31). Richer displays of density make it much easier to see important variations in the distribution:

multi-modality is particularly important, and yet completely invisible with the boxplot.
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Figure 4: From left to right: box plot, vase plot, violin plot and bean plot. Within each plot, the distributions from left to

right are: standard normal (n), right-skewed (s), leptikurtic (k), and bimodal (mm). A normal kernel and bandwidth of

0.2 are used in all plots for all groups.

A more sophisticated display is the sectioned density plot (Cohen and Cohen, 2006), which uses both

colour and space to stack a density estimate into a smaller area, hopefully without losing any information

(not formally verified with a perceptual study). The sectioned density plot is similar in spirit to horizon

graphs for time series (Reijner, 2008), which have been found to be just as readable as regular line graphs

despite taking up much less space (Heer et al., 2009). The density strips of Jackson (2008) provide a similar

compact display that uses colour instead of width to display density. These methods are shown in Figure 5.

6

[40 years of boxplots. Wickham and Stryjewski. 2012. had.co.nz]

Idiom: Dimensionality reduction for documents
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Task 1

In
HD data

Out
2D data

ProduceIn High- 
dimensional data

Why?What?

Derive

In
2D data

Task 2

Out 2D data

How?Why?What?

Encode
Navigate
Select

Discover
Explore
Identify

In 2D data
Out Scatterplot
Out Clusters & 
points

Out
Scatterplot
Clusters & points

Task 3

In
Scatterplot
Clusters & points

Out
Labels for 
clusters

Why?What?

Produce
Annotate

In Scatterplot
In Clusters & points
Out Labels for 
clusters

wombat

• attribute aggregation
– derive low-dimensional target space from high-dimensional measured space 
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Encode

Arrange
Express Separate

Order Align

Use

Manipulate Facet Reduce

Change

Select

Navigate

Juxtapose

Partition

Superimpose
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Embed

How?

Encode Manipulate Facet Reduce

Map

Color

Motion

Size, Angle, Curvature, ...
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from categorical and ordered 
attributes

How to encode:  Arrange space, map channels
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Encode

Arrange
Express Separate

Order Align

Use

Map

Color

Motion

Size, Angle, Curvature, ...

Hue Saturation Luminance

Shape

Direction, Rate, Frequency, ...

from categorical and ordered 
attributes

Encoding visually

• analyze idiom structure
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Definitions: Marks and channels
• marks

– geometric primitives

• channels
– control appearance of marks

Horizontal

Position

Vertical Both

Color

Shape Tilt

Size

Length Area Volume

Points Lines Areas

Encoding visually with marks and channels

• analyze idiom structure
– as combination of marks and channels

41

1: 
vertical position

mark: line

2: 
vertical position
horizontal position

mark: point

3: 
vertical position
horizontal position
color hue

mark: point

4: 
vertical position
horizontal position
color hue
size (area)

mark: point
42

Channels: Expressiveness types and effectiveness rankings
Magnitude Channels: Ordered Attributes Identity Channels: Categorical Attributes

Spatial region

Color hue

Motion

Shape

Position on common scale

Position on unaligned scale

Length (1D size)

Tilt/angle

Area (2D size)

Depth (3D position)

Color luminance

Color saturation

Curvature

Volume (3D size)
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Channels: Rankings
Magnitude Channels: Ordered Attributes Identity Channels: Categorical Attributes

Spatial region

Color hue

Motion

Shape

Position on common scale

Position on unaligned scale

Length (1D size)

Tilt/angle

Area (2D size)

Depth (3D position)

Color luminance

Color saturation

Curvature

Volume (3D size)

• effectiveness principle
– encode most important attributes with 

highest ranked channels

• expressiveness principle
– match channel and data characteristics

Accuracy: Fundamental Theory

44

Accuracy: Vis experiments

45after Michael McGuffin course slides, http://profs.etsmtl.ca/mmcguffin/

[Crowdsourcing Graphical 
Perception: Using Mechanical Turk 
to Assess Visualization Design. 
Heer and Bostock. Proc ACM 
Conf. Human Factors in 
Computing Systems (CHI) 2010, 
p. 203–212.]

Positions

Rectangular 
areas 

(aligned or in a 
treemap)

Angles

Circular 
areas

Cleveland & McGill’s  Results

Crowdsourced Results

1.0 3.01.5 2.52.0
Log Error

1.0 3.01.5 2.52.0
Log Error

How to encode:  Arrange position and region
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Encode

Arrange
Express Separate

Order Align

Use

Map

Color

Motion

Size, Angle, Curvature, ...

Hue Saturation Luminance

Shape

Direction, Rate, Frequency, ...

from categorical and ordered 
attributes

Why?

How?
 

What?

Arrange tables
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Express Values

Separate, Order, Align Regions

Separate Order

1 Key 2  Keys 3 Keys Many Keys
List Recursive SubdivisionVolumeMatrix

Align

Axis Orientation

Layout Density

Dense Space-Filling

Rectilinear Parallel Radial

Idioms: dot chart, line chart
• one key, one value

– data
• 2 quant attribs

– mark: points
• dot plot: + line connection marks between them

– channels
• aligned lengths to express quant value
• separated and ordered by key attrib into 

horizontal regions

– task
• find trend

– connection marks emphasize ordering of items along 
key axis by explicitly showing relationship between 
one item and the next
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1 Key 2  Keys
List Matrix

Many Keys
Recursive Subdivision
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0     
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15
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Year



Idiom: glyphmaps

• rectilinear good for linear vs 
nonlinear trends

• radial good for cyclic patterns
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Two types of glyph – lines and stars – are especially useful for temporal displays. F igure 3displays 1 2

iconic time series shapes with line- and star- glyphs. The data underlying each glyph is measured at 36 time

points. The line- glyphs are time series plots. The star- glyphs are formed by considering the 36 axes radiating

from a common midpoint, and the data values for the row are plotted on each axis relative to the locations

of the minimum and maximum of the variable. This is a polar transformation of the line- glyph.

F igure 3: I con plots for 1 2 iconic time series shapes ( linear increasing, decreasing, shifted, single peak, single dip,
combined linear and nonlinear, seasonal trends with different scales, and a combined linear and seasonal trend) in
E uclidean coordinates, time series icons ( left) and polar coordinates, star plots ( right) .

The paper is structured as follows. S ection 2 describes the algorithm used to create glyphs- maps. S ec-

tion 3discusses their perceptual properties, including the importance of a visual reference grid, and of

carefully consideration of scale. L arge data and the interplay of models and data are discussed in S ection 4 .

M any spatiotemporal data sets have irregular spatial locations, and S ection 5 discusses how glyph- maps can

be adjusted for this type of data. Three datasets are used for examples:

data- expo The A S A 2 0 0 9 data expo data ( M urrell, 2 0 1 0 ) consists of monthly observations of sev-

eral atmospheric variables from the I nternational S atellite C loud C limatology P roject. The

dataset includes observations over 7 2 months ( 1 9 9 5 –2 0 0 0 ) on a 2 4 x 2 4 grid ( 5 7 6 locations)

stretching from 1 1 3 .7 5 �W to 5 6 .2 5 �W longitude and 2 1 .2 5 �S to 3 6 .2 5 �N latitude.

G I S TE M P surface temperature data provided on 2 � x 2 � grid over the entire globe, measured monthly

( E arth S ystem R esearch L aboratory, P hysical S ciences D ivision, N ational O ceanic and A tmo-

spheric A dministration, 2 0 1 1 ) . G round station data w as de- seasonalized, differenced from

from the 1 9 5 1 - 1 9 8 0 temperature averages, and spatially averaged to obtain gridded mea-

surements. F or the purposes of this paper, we extracted the locations corresponding to the

continental US A .

US H C N ( Version 2 ) ground station network of historical temperatures ( N ational O ceanic and A t-

mospheric A dministration, N ational C limatic D ata C enter, 2 0 1 1 ) . Temperatures from 1 2 1 9

stations on the contiguous United S tates, from 1 8 7 1 to present.
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[Glyph-maps for Visually Exploring Temporal Patterns in Climate Data and Models. 
Wickham, Hofmann, Wickham, and Cook. Environmetrics 23:5 (2012), 382–393.]

Axis Orientation
Rectilinear Parallel Radial

Idiom: heatmap
• two keys, one value

– data
• 2 categ attribs (gene, experimental condition)
• 1 quant attrib (expression levels)

– marks: area
• separate and align in 2D matrix

– indexed by 2 categorical attributes

– channels
• color by quant attrib

– (ordered diverging colormap)

– task
• find clusters, outliers

– scalability
• 1M items, 100s of categ levels, ~10 quant attrib levels 50

1 Key 2  Keys
List Matrix

Many Keys
Recursive Subdivision

Idiom: cluster heatmap
• in addition

– derived data
• 2 cluster hierarchies

– dendrogram
• parent-child relationships in tree with connection line marks
• leaves aligned so interior branch heights easy to compare

– heatmap
• marks (re-)ordered by cluster hierarchy traversal
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Arrange spatial data
Use Given

Geometry
Geographic
Other Derived

Spatial Fields
Scalar Fields (one value per cell)

Isocontours

Direct Volume Rendering

Vector and Tensor Fields (many values per cell)

Flow Glyphs (local)

Geometric (sparse seeds)

Textures (dense seeds)

Features (globally derived)

Idiom: choropleth map
• use given spatial data

– when central task is understanding spatial 
relationships

• data
– geographic geometry
– table with 1 quant attribute per region

• encoding
– use given geometry for area mark boundaries
– sequential segmented colormap 
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http://bl.ocks.org/mbostock/4060606

Idiom: topographic map
• data

– geographic geometry
– scalar spatial field

• 1 quant attribute per grid cell

• derived data
– isoline geometry

• isocontours computed for 
specific levels of scalar values 
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Land Information New Zealand Data Service

Idioms: isosurfaces, direct volume rendering
• data

– scalar spatial field
• 1 quant attribute per grid cell

• task
– shape understanding, spatial relationships

• isosurface
– derived data: isocontours computed for 

specific levels of scalar values

• direct volume rendering
– transfer function maps scalar values to 

color, opacity
• no derived geometry
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[Interactive Volume Rendering Techniques. Kniss. Master’s thesis, 
University of Utah Computer Science, 2002.]

[Multidimensional Transfer Functions for Volume Rendering. Kniss, Kindlmann, and Hansen.  In The Visualization Handbook, 
edited by Charles Hansen and Christopher Johnson, pp. 189–210. Elsevier, 2005.]

A B C
A B C

D E

F

Data Value

%

&

(

'

)

Idioms: vector glyphs
• tasks

– finding critical points, identifying their 
types

– identifying what type of critical point is 
at a specific location

– predicting where a particle starting at a 
specified point will end up (advection)
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[Comparing 2D vector field visualization methods: A user study. Laidlaw et al. IEEE Trans. 
Visualization and Computer Graphics (TVCG) 11:1 (2005), 59–70.]

Attracting Node:
     R1, R2 < 0,
     I1 = I2 = 0

Repelling Node:

    I1 = I2 = 0

R1, R2 > 0,
Attracting Focus:

   I1 = !I2 <> 0

R1 = R2 < 0,
Repelling Focus:
   R1 = R2 >0,
  I1 = !I2 <> 0

Saddle Point:
 R1<0, R2>0,
 I1 = I2 = 0

Fig. 1. Common rst order singularity types

3.1 Critical Points and Separatrices

Critical points (also called singularities) are the only locations where streamlines

can intersect. They exist in various types that correspond to specic geometries of

the streamlines in their neighborhood. We focus on the linear case: There are 5 com-

mon types characterized by the eigenvalues of the Jacobian (see Fig. 1). Attracting

nodes and foci are sinks while repelling nodes and foci are sources. A fundamental

invariant is the so-called index of a critical point, dened as the number of eld

rotations while traveling around the critical point along a closed curve, counter-

clockwise. Note that all sources and sinks mentioned above have index +1 while

saddle points have index -1. Separatrices are streamlines that start or end at a saddle

point.

3.2 Closed Streamlines

A closed streamline, which is sometimes known as closed orbit, is a streamline that

is connected to itself so that a loop is built. Consequently, this is a streamline ca, so

that there is a t0 ∈ R with ca(t + nt0) = ca(t) ∀ n ∈ N. From a topological point

of view, closed streamlines behave in the same way as sources or sinks. To detect

these closed streamlines we use the algorithm proposed by two of the authors [12].

Interpolating linearly on the given grid we get a continuous vector eld. To nd

closed streamlines we use the underlying grid to nd a region that is never left by

the streamline. If there is no critical point inside this region, we have found a closed

streamline according to the Poincaré-Bendixson-theorem.

3.3 Bifurcations

One distinguishes two types of structural transitions: local and global bifurcations.

In the following, we focus on typical 2D local bifurcations and present a typical

aspect of global bifurcations.

3

[Topology tracking for the visualization of time-dependent two-dimensional flows. Tricoche, 
Wischgoll, Scheuermann, and Hagen. Computers & Graphics 26:2 (2002), 249–257.]

Idiom: similarity-clustered streamlines
• data

– 3D vector field

• derived data (from field)
– streamlines: trajectory particle will follow

• derived data (per streamline)
– curvature, torsion, tortuosity
– signature: complex weighted combination
– compute cluster hierarchy across all signatures
– encode: color and opacity by cluster

• tasks
– find features, query shape

• scalability
– millions of samples, hundreds of streamlines
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[Similarity Measures for Enhancing Interactive Streamline Seeding. 
McLoughlin,. Jones, Laramee, Malki, Masters, and. Hansen. IEEE Trans. 
Visualization and Computer Graphics 19:8 (2013), 1342–1353.]
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Arrange networks and trees

Node–Link Diagrams

Enclosure

Adjacency Matrix

TREESNETWORKS

Connection Marks

TREESNETWORKS

Derived Table

TREESNETWORKS

Containment Marks

Idiom: force-directed placement
• visual encoding

– link connection marks, node point marks

• considerations
– spatial position: no meaning directly encoded

• left free to minimize crossings

– proximity semantics?
• sometimes meaningful

• sometimes arbitrary, artifact of layout algorithm

• tension with length
– long edges more visually salient than short

• tasks
– explore topology; locate paths, clusters

• scalability
– node/edge density E < 4N

59http://mbostock.github.com/d3/ex/force.html
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Idiom: adjacency matrix view
• data: network

– transform into same data/encoding as heatmap

• derived data: table from network
– 1 quant attrib

• weighted edge between nodes 

– 2 categ attribs: node list x 2

• visual encoding
– cell shows presence/absence of edge

• scalability
– 1K nodes, 1M edges
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7.1. Using Space 135

Figure 7.5: Comparing matrix and node-link views of a five-node network.
a) Matrix view. b) Node-link view. From [Henry et al. 07], Figure 3b and
3a. (Permission needed.)

the number of available pixels per cell; typically only a few levels would
be distinguishable between the largest and the smallest cell size. Network
matrix views can also show weighted networks, where each link has an as-
sociated quantitative value attribute, by encoding with an ordered channel
such as color luminance or size.

For undirected networks where links are symmetric, only half of the
matrix needs to be shown, above or below the diagonal, because a link
from node A to node B necessarily implies a link from B to A. For directed
networks, the full square matrix has meaning, because links can be asym-
metric. Figure 7.5 shows a simple example of an undirected network, with
a matrix view of the five-node dataset in Figure 7.5a and a corresponding
node-link view in Figure 7.5b.

Matrix views of networks can achieve very high information density, up
to a limit of one thousand nodes and one million edges, just like cluster
heatmaps and all other matrix views that uses small area marks.

Technique network matrix view
Data Types network
Derived Data table: network nodes as keys, link status between two

nodes as values
View Comp. space: area marks in 2D matrix alignment
Scalability nodes: 1K

edges: 1M

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.1.3.3 Multiple Keys: Partition and Subdivide When a dataset has only
one key, then it is straightforward to use that key to separate into one region

[NodeTrix: a Hybrid Visualization of Social Networks. 
Henry, Fekete, and McGuffin. IEEE TVCG (Proc. InfoVis) 
13(6):1302-1309, 2007.]

[Points of view: Networks. Gehlenborg and Wong. Nature Methods 9:115.]

Connection vs. adjacency comparison

• adjacency matrix strengths
– predictability, scalability, supports reordering
– some topology tasks trainable

• node-link diagram strengths
– topology understanding, path tracing
– intuitive, no training needed

• empirical study
– node-link best for small networks
– matrix best for large networks

• if tasks don’t involve topological structure!

61

[On the readability of graphs using node-link and matrix-based 
representations: a controlled experiment and statistical analysis. 
Ghoniem, Fekete, and Castagliola. Information Visualization 4:2 
(2005), 114–135.]

http://www.michaelmcguffin.com/courses/vis/patternsInAdjacencyMatrix.png

Idiom: radial node-link tree
• data

– tree

• encoding
– link connection marks
– point node marks
– radial axis orientation

• angular proximity: siblings
• distance from center: depth in tree 

• tasks
– understanding topology,  following paths

• scalability
– 1K - 10K nodes

62http://mbostock.github.com/d3/ex/tree.html
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Idiom: treemap
• data

– tree
– 1 quant attrib at leaf nodes

• encoding
– area containment marks for hierarchical structure
– rectilinear orientation
– size encodes quant attrib

• tasks
– query attribute at leaf nodes

• scalability
– 1M leaf nodes

63

http://tulip.labri.fr/Documentation/3_7/userHandbook/html/ch06.html

Connection vs. containment comparison

• marks as links (vs. nodes)
– common case in network drawing
– 1D case: connection

• ex: all node-link diagrams
• emphasizes topology, path tracing
• networks and trees

– 2D case: containment
• ex: all treemap variants
• emphasizes attribute values at leaves (size coding)
• only trees
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Node–Link Diagram Treemap Elastic Hierarchy 

Node-Link Containment 

[Elastic Hierarchies: Combining Treemaps and Node-Link 
Diagrams. Dong, McGuffin, and Chignell. Proc. InfoVis 
2005, p. 57-64.]

Containment Connection



How to encode:  Mapping color
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Encode

Arrange
Express Separate

Order Align

Use

Map

Color

Motion

Size, Angle, Curvature, ...

Hue Saturation Luminance

Shape

Direction, Rate, Frequency, ...

from categorical and ordered 
attributes

Why?

How?
 

What?

Color: Luminance, saturation, hue

• 3 channels
– identity for categorical

• hue

– magnitude for ordered
• luminance
• saturation

• better match for visual encoding than RGB color space from graphics
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Saturation

Luminance values

Hue

Categorical color: Discriminability constraints

• noncontiguous small regions of color: only 6-12 bins
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[Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms. Sinha and Meller. BMC Bioinformatics, 8:82, 2007.]
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Datasets

What?
Attributes

Dataset Types

Data Types

Data and Dataset Types

Tables

Attributes (columns)

Items 
(rows)

Cell containing value

Networks

Link

Node 
(item)

Trees

Fields (Continuous)

Geometry (Spatial)

Attributes (columns)

Value in cell

Cell

Multidimensional Table

Value in cell

Items Attributes Links Positions Grids

Attribute Types

Ordering Direction

Categorical

Ordered
Ordinal

Quantitative

Sequential

Diverging

Cyclic

Tables Networks & 
Trees

Fields Geometry Clusters, 
Sets, Lists

Items

Attributes

Items (nodes)

Links

Attributes

Grids

Positions

Attributes

Items

Positions

Items

Grid of positions

Position

Trends

Actions

Analyze

Search

Query

Why?

All Data

Outliers Features

Attributes

One Many
Distribution Dependency Correlation Similarity

Network Data

Spatial Data

Topology

Paths

Extremes

Consume
Present EnjoyDiscover

Produce
Annotate Record Derive

Identify Compare Summarize

tag

Target known Target unknown

Location 
known
Location 
unknown

Lookup

Locate

Browse

Explore

Targets

Why?

What?

Encode

Arrange
Express Separate

Order Align

Use

Manipulate Facet Reduce

Change

Select

Navigate

Juxtapose

Partition

Superimpose

Filter

Aggregate

Embed

How?

Encode Manipulate Facet Reduce

Map

Color

Motion

Size, Angle, Curvature, ...

Hue Saturation Luminance

Shape

Direction, Rate, Frequency, ...

from categorical and ordered 
attributes

algorithm

idiom

abstraction

domain

More Information
• this talk

http://www.cs.ubc.ca/~tmm/talks.html#vad15dagstuhl

• book page (including tutorial lecture slides)
http://www.cs.ubc.ca/~tmm/vadbook

– 20% promo code for book+ebook combo: 
HVN17

– http://www.crcpress.com/product/isbn/9781466508910

– illustrations: Eamonn Maguire

• papers, videos, software, talks, full courses 
http://www.cs.ubc.ca/group/infovis 
http://www.cs.ubc.ca/~tmm
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Munzner.  A K Peters Visualization Series, CRC Press,  Visualization Series, 2014.

Visualization Analysis and Design.


