Visualization Analysis & Design **Full-Day Tutorial** Session 4 Tamara Munzner

Department of Computer Science

University of British Columbia

Sanger Institute / European Bioinformatics Institute June 2014, Cambridge UK

http://www.cs.ubc.ca/~tmm/talks.html#minicourse14

No unjustified 3D: Danger of depth

- we don't really live in 3D: we see in 2.05D -acquire more info on image plane quickly from eye movements
- -acquire more info for depth slower, from head/body motion

No unjustified 3D example: Time-series data

• extruded curves: detailed comparisons impossible

consider whether network data requires 2D

and harder label lookup compared to text lists

-be especially careful for search results, document

benefits outweigh costs when topological

structure/context important for task

-arranging as network means lower information density

-especially if reading text is central to task!

No unjustified 2D

collections, ontologies

spatial layout

[Cluster and Calendar based Visualization of Time Series Data. van Wijk and van Selow, Proc. InfoVis 99.]

Occlusion hides information

• Visualization Analysis Framework

Session I 9:30-10:45am

- Marks and Channels

Session 3 1:15pm-2:45pm

- Introduction: Definitions

-Analysis: What, Why, How

Idiom Design Choices, Part 2

- Manipulate: Change, Select, Navigate

- Reduce: Filter, Aggregate, Embed

- Facet: Juxtapose, Partition, Superimpose

http://www.cs.ubc.ca/~tmm/talks.html#minicourse14

occlusion

Outline

interaction complexity

No unjustified 3D example: Transform for new data abstraction

· derived data: cluster hierarchy

juxtapose multiple views: calendar, superimposed 2D curves

• Idiom Design Choices

- Arrange Tables

- Map Color

- Validation

-Arrange Spatial Data

Session 4 3-4:30pm

- BioVis Analysis Example

-Rules of Thumb

Session 2 11:00am-12:15pm

-Arrange Networks and Trees

Guidelines and Examples

[Cluster and Calendar based Visualization of Time Series Data. van Wijk and van Selow, Proc. InfoVis 99.]

Eyes beat memory

Targets

(>) Network Data

→ Topology

→ Paths

* 0

- · principle: external cognition vs. internal memory
- easy to compare by moving eyes between side-by-side views
- -harder to compare visible item to memory of what you saw
- implications for animation
- -great for choreographed storytelling -great for transitions between two states
- -poor for many states with changes everywhere
- · consider small multiples instead

literal show time with time

small multiples show time with space

abstract

Rules of Thumb

- · No unjustified 3D
- Power of the plane, dangers of depth
- Occlusion hides information
- Perspective distortion loses information
- Tilted text isn't legible
- No unjustified 2D
- · Eyes beat memory
- · Resolution over immersion
- · Overview first, zoom and filter, details on demand · Function first, form next

Targets

→ Spatial Data

[Image-Based Streamline Generation and Rendering, Li and Shen. IEEE Trans. Visualization and Computer Graphics (TVCG) 13:3 (2007), 630–640.]

→ Shape

Perspective distortion loses information

-interferes with all size channel encodings

[Visualizing the Results of Multimedia Web Search Engines.

Justified 3D: shape perception

• benefits outweigh costs when task is shape perception for

-interactive navigation supports

synthesis across many viewpoints

Eyes beat memory example: Cerebral

• small multiples: one graph instance per experimental condition

3D spatial data

- same spatial layout

- color differently, by condition

perspective distortion

-power of the plane is lost!

Mukherjea, Hirata, and Hara. InfoVis 96]

Tilted text isn't legible

· high-ranked spatial position

→ Magnitude Channels: Ordered Attributes

Position on common scale

Position on unaligned scale

- not depth!

Length (1D size)

Tilt/angle

Area (2D size)

Depth (3D position)

channels: **planar** spatial position

- text legibility -far worse when tilted from image plane

No unjustified 3D: Power of the plane

further reading

[Exploring and Reducing the Effects of Orientation on Text Readability in Volumetric Displays. Grossman et al. CHI 2007]

No unjustified 3D • 3D legitimate for true 3D spatial data

- 3D needs very careful justification for abstract data - enthusiasm in 1990s, but now skepticism
- be especially careful with 3D for point clouds or networks

[WEBPATH-a three dimensional Web history. Frecon and Smith. Proc. InfoVis 1999]

- regions: comparison difficult
- -vs contiguous frames

- even major changes difficult to notice if mental buffer wiped

- -animated transitions

Physical Intensity

Steven's Psychophysical Power Law: S= I^N

[Visualizing the World-Wide Web with the Navigational View Builder

Why not animation? disparate frames and

- -vs small region
- -vs coherent motion of group
 - change blindness
- safe special case

- [Cerebral:Visualizing Multiple Experimental Conditions on a Graph with Biological Context. Barsky, Munzner, Gardy, and Kincaid. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 2008) 14:6 (2008), 1253–1260.]

Mostly unaffected protein regions

- Marks and Channels

Idiom Design Choices, Part 2 Session 3 1:15pm-2:45pm

In contrast, low scoring gene

- Manipulate: Change, Select, Navigate
- Facet: Juxtapose, Partition, Superimpose

http://www.cs.ubc.ca/~tmm/talks.html#minicourse14

- Reduce: Filter, Aggregate, Embed

- -Arrange Networks and Trees
- -Map Color

Guidelines and Examples Session 4 3-4:30pm

- -Rules of Thumb
- Validation
- BioVis Analysis Example

- conferences
- -VIS:VAST, InfoVis, SciVis http://ieeevis.org
- 2014: Paris, Nov 9-14

No collocation of variants

- EuroVis
- 2014: Swansea, Jun 9-13
- -BioVis
- 2014: Boston, Jul 11-12 (w/ ISMB)
- VizBi
- 2015: Boston, March 25-27

