Visualization Analysis \& Design Half-Day Tutorial
 Tamara Munzner
 Department of Computer Science University of British Columbia
 @tamaramunzner

Visualization Analysis \& Design, Half-Day Tutorial

- Session 1
- Analysis: What, Why, How
- Marks and Channels
- Arrange Tabular \& Spatial Data
- Session 2
- Arrange Networks and Trees
- Map Color and Other Channels
- Manipulate \& Facet
-Reduce: Filter, Aggregate

Defining visualization (vis)

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Defining visualization (vis)

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Why?...

Why have a human in the loop?

Computer-based xicyalimation systems provide visual representations o datasets designed to hel people arry out tasks more effectively.

Why have a human in the loop?

Computer-based xisulalization systems provide visual representations o datasets designed to hel people arry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

Why have a human in the loop?

Computer-based xisulalization systems provide visual representations o datasets designed to hel people arry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

- don't need vis when fully automatic solution exists and is trusted
- many analysis problems ill-specified
- don't know exactly what questions to ask in advance
- possibilities
- long-term use for end users (ex: exploratory analysis of scientific data)
- presentation of known results (ex: New York Times Upshot)
- stepping stone to assess requirements before developing models
- help automatic solution developers refine \& determine parameters
- help end users of automatic solutions verify, build trust

Why use an external representation?

Computer-based visualization systems provid visual representations f datasets designed to help people carry out tasks more efiectivery.

- external representation: replace cognition with perception

Data Panel ¢ ¢							
$\# \square B$							
ID	Function	LPSLL37_1	LPSLL37_1_pvals	LPSLL37_2	LPSLL37_24	LPSLL3	
IRAK2	Kinase	2.367	0.251	1.337	-1.553		
NFKB2	Transcription factor	-1.14	0.972	-1.03	1.303	0.807	
CXCL2	Chemokine	1.853	0.376	4.111	-1.019	0.745	
CHUK	Kinase	-1.376	0.373	2.232	1.194	0.387	
IL13	Cytokine	-5.961		2.139	-1.236	0.601	
RELA	Transcription factor	-1.077	0.564	-1.169	1.943	0.594	
IKBKB	Kinase	1.167	0.29	1.421	-1.907	0.286	
CCL4	Chemokine	1.254	0.878	-1.052	1.499	0.761	
MAP3K7		1.01	0.956	-1.096	1.222	0.8	
ICAM1	Adhesion	1.184	0.669	1.537	1.392	0.671	
IRF1	Transcription factor	-1.013	0.519	1.416	1.081	0.995	
CXCL3	Chemokine	1.7	0.905	1.092	-1.598	0.521	
IL12B	Cytokine	-2.448	0.042	-1.473	-2.109	0.08	
CCL11	Chemokine	-1.338	0.349	-1.995	-1.785	0.129	
MAP3K7IP1	Adaptor						
IENS.	rutnkine	-115	0801	${ }^{075}$	1053	0521	

Why use an external representation?

Computer-based visualization systems provid visual representations f datasets designed to help people carry out tasks more efiectivery:

- external representation: replace cognition with perception

Why represent all the data?

Computer-based visualization systems provide visua representations of datasets designed to help people carry out tasks more effectivery.

- summaries lose information, details matter
- confirm expected and find unexpected patterns
-assess validity of statistical model

Anscombe's Quartet

Identical statistics	
x mean	9
x variance	10
y mean	7.5
y variance	3.75
x/y correlation	0.816

Datasaurus Dozen

[^0]Datasets with Varied Appearance and Identical
Statistics through Simulated Annealing. CHI 2017.

Why analyze?

- imposes structure on huge design space
- scaffold to help you think systematically about choices
-analyzing existing as stepping stone to designing new
-most possibilities ineffective for particular task/data combination

Analysis framework: Four levels, three questions

- domain situation
- who are the target users?

Analysis framework: Four levels, three questions

- domain situation
- who are the target users?
- abstraction
- translate from specifics of domain to vocabulary of vis
- what is shown? data abstraction
- why is the user looking at it? task abstraction
[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG I5(6):92I-928, 2009
(Proc. InfoVis 2009).]

[A Multi-Level Typology of Abstract Visualization Tasks Brehmer and Munzner. IEEE TVCG 19(I2):2376-2385, 2013 (Proc. InfoVis 2013).]

Analysis framework: Four levels, three questions

- domain situation
- who are the target users?
- abstraction
- translate from specifics of domain to vocabulary of vis
- what is shown? data abstraction
- why is the user looking at it? task abstraction
- idiom
- how is it shown?
[A Nested Model of Visualization Design and Validation. Munzner. IEEETVCG I5(6):92I-928, 2009
(Proc. InfoVis 2009).]

- visual encoding idiom: how to draw
- interaction idiom: how to manipulate
[A Multi-Level Typology of Abstract Visualization Tasks Brehmer and Munzner. IEEE TVCG 19(I2):2376-2385, 2013 (Proc. InfoVis 2013).]

Analysis framework: Four levels, three questions

- domain situation
- who are the target users?
[A Nested Model of Visualization Design and Validation. Munzner. IEEETVCG I5(6):92I-928, 2009
(Proc. InfoVis 2009).]
- abstraction
- translate from specifics of domain to vocabulary of vis
- what is shown? data abstraction
- why is the user looking at it? task abstraction
- idiom

-how is it shown?
[A Multi-Level Typology of Abstract Visualization Tasks Brehmer and Munzner. IEEE TVCG 19(I2):2376-2385, 2013 (Proc. InfoVis 2013).]
- algorithm
- efficient computation

Why is validation difficult?

- different ways to get it wrong at each level

1 Domain situation
You misunderstood their needs
θ Data/task abstraction
You're showing them the wrong thing

Visual encoding/interaction idiom
The way you show it doesn't work
(${ }^{m}$ Algorithm
Your code is too slow

Why is validation difficult?

- solution: use methods from different fields at each level

Why is validation difficult?

- solution: use methods from different fields at each level

computer science

Why is validation difficult?

- solution: use methods from different fields at each level

Why is validation difficult?

- solution: use methods from different fields at each level

Design Study Methodology: Reflections from the Trenches and the Stacks

Cerebral genomics

MostVis in-car networks

Constellation linguistics

MizBee genomics

Car-X-Ray in-car networks

Pathline genomics

ProgSpy20IO in-car networks

MulteeSum genomics

RelEx
in-car networks

Vismon fisheries management

AutobahnVis in-car networks

WiKeVis in-car networks

Cardiogram in-car networks

VisTra in-car networks
[Sedlmair, Meyer, Munzner. IEEE Trans.Visualization and Computer Graphics I8(I2): 243I-2440, 2012 (Proc. InfoVis 2012).]

What?

Why?

How?

Three major datatypes

Three major datatypes

Θ Dataset Types
\rightarrow Tables

Three major datatypes

Θ Dataset Types

Three major datatypes

Θ Dataset Types

Three major datatypes

Θ Dataset Types

- visualization vs computer graphics
-geometry is design decision

Attribute types

Θ Attribute Types
\rightarrow Categorical

\rightarrow Ordered

Θ Ordering Direction
\rightarrow Sequential
\rightarrow Diverging

\rightarrow Cyclic

Why？

Θ Analyze
\rightarrow Consume

\rightarrow Produce

Θ Search

	Target known	Target unknown
Location known	\cdots Lookup	－\odot Browse
Location unknown	＜${ }^{\circ} \cdot{ }^{\text {P }}$＞Locate	＜${ }^{\circ} \mathrm{O} \cdot$－＞Explore

Θ Query
\rightarrow Identify

\rightarrow Compare

\rightarrow Summarize明囲止䀳目
Θ All Data

\leftrightarrow

\rightarrow Extremes illis．Network Data
\rightarrow Topology

\rightarrow Paths
Θ Spatial Data
\rightarrow Shape

Why？

Θ Analyze
\rightarrow Consume

\rightarrow Produce

Θ
Search
－\｛action，target\} pairs
－discover distribution
－compare trends
－locate outliers
－browse topology

	Target known	Target unknown
Location known	．\because－Lookup	－© Browse
Location unknown	＜．O．＞Locate	＜－O．－＞Explore

\rightarrow Identify
\rightarrow Compare
\rightarrow Summarize
明里里埵且
Θ

All Data

Θ

\rightarrow Extremes illı．Network Data
\rightarrow Topology

\rightarrow Paths
Θ Spatial Data
\rightarrow Shape

Actions:Analyze, Query

- analyze
- consume
- discover vs present
- aka explore vs explain
- enjoy
- aka casual, social
- produce
- annotate, record, derive
- query
-how much data matters?
- one, some, all
- independent choices
- analyze, query, (search)

Analyze
\rightarrow Consume
\rightarrow Discover

\rightarrow Produce
\rightarrow Annotate

\leftrightarrow Query

Actions:Analyze, Query

- analyze
- consume
- discover vs present
-aka explore vs explain
- enjoy
- aka casual, social
- produce
- annotate, record, derive
- query
-how much data matters?
- one, some, all
- independent choices
- analyze, query, (search)

Analyze
\rightarrow Consume
\rightarrow Discover

\rightarrow Present
\rightarrow Enjoy

\rightarrow Produce
\rightarrow Annotate

Θ Query
\rightarrow Identify \rightarrow Compare \rightarrow Summarize

$\square \square \square \square \square \square \square \square \square$ $\square \square \square \square \square \square \square$

Derive

- don't necessarily just draw what you're given!
-decide what the right thing to show is
-create it with a series of transformations from the original dataset
-draw that
- one of the four major strategies for handling complexity

Original Data

trade balance $=$ exports - imports

Analysis example: Derive one attribute

- Strahler number

- centrality metric for trees/networks
- derived quantitative attribute
- draw top 5 K of 500 K for good skeleton
[Using Strahler numbers for real time visual exploration of huge graphs. Auber. Proc. Intl. Conf. Computer Vision and Graphics, pp. 56-69, 2002.]

Why:Targets

Θ All Data

\rightarrow Attributes

Θ Network Data
\rightarrow Topology

\rightarrow Paths

Θ Spatial Data
\rightarrow Shape

How?

Encode

Θ Map

from categorical and ordered attributes
\rightarrow Color
\rightarrow Hue \rightarrow Saturation \rightarrow Luminance
\rightarrow Size, Angle, Curvature, ...

- ■ I/ニ_ ()))
\rightarrow Shape

\rightarrow Motion
Direction, Rate, Frequency, ...

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, Nov 2014.
- Chap I:What's Vis, and Why Do It?
- Chap 2:What:Data Abstraction
- Chap 3:Why:Task Abstraction
- A Multi-Level Typology of Abstract Visualization Tasks. Brehmer and Munzner. IEEE Trans.Visualization and Computer Graphics (Proc. InfoVis) 19:I2 (2013), 2376-2385.
- Low-Level Components of Analytic Activity in Information Visualization. Amar, Eagan, and Stasko. Proc. IEEE InfoVis 2005, p III-II7.
- A taxonomy of tools that support the fluent and flexible use of visualizations. Heer and Shneiderman. Communications of the ACM 55:4 (20I2), 45-54.
- Rethinking Visualization:A High-Level Taxonomy. Tory and Möller. Proc. IEEE InfoVis 2004, p I5I-I58.
- Visualization ofTime-Oriented Data. Aigner, Miksch, Schumann, and Tominski. Springer, 20II.

Visualization Analysis \& Design, Half-Day Tutorial

- Session 1
- Analysis: What, Why, How
- Marks and Channels
- Arrange Tabular \& Spatial Data
- Session 2
- Arrange Networks and Trees
- Map Color and Other Channels
- Manipulate \& Facet
-Reduce: Filter, Aggregate

How?

Encode

What?
Θ Map
from categorical and ordered attributes
\rightarrow Color
\rightarrow Hue \rightarrow Saturation \rightarrow Luminance
\rightarrow Size, Angle, Curvature, ..

- ■ I/ニ_ ()))
\rightarrow Shape
+ - ■
\rightarrow Motion
Direction, Rate, Frequency, ...

How?

Θ Arrange
\rightarrow Express \longrightarrow \rightarrow Separate

\rightarrow Order $\xrightarrow{-\square^{-\square}}$
\rightarrow Use B. x^{3}

Θ Map

from categorical and ordered attributes
\rightarrow Color
\rightarrow Hue \rightarrow Saturation \rightarrow Luminance
\rightarrow Size, Angle, Curvature, ..
-■ ■ I/人 |)))
\rightarrow Shape

+ - ■
\rightarrow Motion
Direction, Rate, Frequency, ...

Manipulate
Θ Change

Θ Select

\oplus
Navigate < \because 〉
Θ Partition

Θ Superimpose

Reduce

Θ Filter

Θ Aggregate

Θ Embed
=

Visual encoding

- analyze idiom structure

Definitions: Marks and channels

Definitions: Marks and channels

- marks
-geometric primitives

Definitions: Marks and channels

- marks
-geometric primitives
- channels
- control appearance of marks

Θ Position

Θ Color / / /

Definitions: Marks and channels

- marks
-geometric primitives
- channels
- control appearance of marks
- channel properties differ
- type \& amount of information that can be conveyed to human perceptual system
\rightarrow

Θ Position

Θ Color

Θ Shape

Θ Tilt

Θ Size

Visual encoding

- analyze idiom structure as combination of marks and channels

1:
vertical position
mark: line

Visual encoding

- analyze idiom structure as combination of marks and channels

l:
vertical position
mark: line

2:
vertical position horizontal position
mark: point

Visual encoding

- analyze idiom structure as combination of marks and channels

l:
vertical position
mark: line

2:
vertical position horizontal position

3:
vertical position
horizontal position color hue
mark: point

Visual encoding

- analyze idiom structure as combination of marks and channels

l:
vertical position
mark: line

2:
vertical position horizontal position
mark: point

3:
vertical position
horizontal position color hue
mark: point

4:
vertical position
horizontal position color hue size (area)
mark: point

Channels: Rankings

Position on common scale	$\longmapsto \longrightarrow$	Spatial region	-
Position on unaligned scale	$\stackrel{\bullet}{\longmapsto}$	Color hue	
Length (1D size)	- -	Motion	$\stackrel{\bullet}{\bullet}{ }^{\bullet}$
Tilt/angle	$1 /$	Shape	$\pm \bigcirc \square$
Area (2D size)	- ■		
Depth (3D position)	$\longmapsto \bullet \longmapsto \bullet$		
Color luminance Color saturation			
Curvature Volume (3D size)	$1 \quad) 7$		

Channels: Rankings

Θ Magnitude Channels: Ordered Attributes
Position on common scale

Position on unaligned scale

Length (1D size) \qquad

-■ \square

Depth (3D position)

Color luminance

Color saturation

Curvature

Volume (3D size)
Θ Identity Channels: Categorical Attributes
Spatial region

- expressiveness

- match channel and data characteristics

Channels: Rankings

Θ Magnitude Channels: Ordered Attributes
Position on common scale

Position on unaligned scale

Length (1D size)

Tilt/angle

Area (2D size)

Depth (3D position)

Color luminance

Color saturation

Curvature

Volume (3D size)
() Identity Channels: Categorical Attributes

Spatial region

Color hue

Motion

Shape

- expressiveness

- match channel and data characteristics
- magnitude for ordered
- how much? which rank?
- identity for categorical
- what?
Θ Attribute Types
\rightarrow Categorical

\rightarrow Ordered
\rightarrow Ordinal $\quad \rightarrow$ Quantitative
\qquad
\qquad
\qquad

Channels: Rankings

Θ Magnitude Channels: Ordered Attributes
Position on common scale

Channels: Rankings

- expressiveness

- match channel and data characteristics
- effectiveness
- channels differ in accuracy of perception
- spatial position ranks high for both

Accuracy: Fundamental Theory

Steven's Psychophysical Power Law: $\mathrm{S}=\mathrm{I}^{\mathrm{N}}$

Separability vs. Integrality

Fully separable
2 groups each

Some interference
2 groups each

Width

+ Height

Some/significant interference
3 groups total: integral area

Red

+ Green

Major interference
4 groups total: integral hue

Grouping

- containment
- connection

Marks as Links

Θ Containment

Θ Identity Channels: Categorical Attributes
Θ Connection

$\square \square \square$

Color hue

Motion

Shape

- same spatial region
- similarity
- same values as other categorical channels

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, Nov 2014.
- Chap 5: Marks and Channels
- On the Theory of Scales of Measurement. Stevens. Science I03:2684 (1946), 677-680.
- Psychophysics: Introduction to its Perceptual, Neural, and Social Prospects. Stevens.Wiley, I975.
- Graphical Perception:Theory, Experimentation, and Application to the Development of Graphical Methods. Cleveland and McGill. Journ. American Statistical Association 79:387 (1984), 53I-554.
- Perception in Vision. Healey. http://www.csc.ncsu.edu/faculty/healey/PP
- Visual Thinking for Design.Ware. Morgan Kaufmann, 2008.
- Information Visualization: Perception for Design, 3rd edition.Ware. Morgan Kaufmann /Academic Press, 2004.

Visualization Analysis \& Design, Half-Day Tutorial

- Session 1
- Analysis: What, Why, How
- Marks and Channels
-Arrange Tabular \& Spatial Data
- Session 2
- Arrange Networks and Trees
- Map Color and Other Channels
- Manipulate \& Facet
-Reduce: Filter, Aggregate

How?

Keys and values

- key
- independent attribute
- used as unique index to look up items

Attributes (columns)

Items
(rows)

Cell containing value
\rightarrow Multidimensional Table

- classify arrangements by key count -0, I, 2, many...
Θ Express Values $\rightarrow 1$ Key List

$\rightarrow 2$ Keys
Matrix

Idiom: scatterplot

- express values
- quantitative attributes
- no keys, only values
- data
- 2 quant attribs
-mark: points
- channels
- horiz + vert position
- tasks

- find trends, outliers, distribution, correlation, clusters
- scalability
- hundreds of items

Some keys: Categorical regions

- regions: contiguous bounded areas distinct from each other
- using space to separate (proximity)
-following expressiveness principle for categorical attributes
- use ordered attribute to order and align regions

\rightarrow Order

\rightarrow Align

Idiom: bar chart

- one key, one value
- data
- I categ attrib, I quant attrib -mark: lines
- channels

Animal Type

Animal Type

- length to express quant value
- spatial regions: one per mark
- separated horizontally, aligned vertically
- ordered by quant attrib » by label (alphabetical), by length attrib (data-driven)
- task
- compare, lookup values
- scalability
- dozens to hundreds of levels for key attrib

Idiom: stacked bar chart

- one more key
- data
- 2 categ attrib, I quant attrib
- mark: vertical stack of line marks

- glyph: composite object, internal structure from multiple marks
- channels
- length and color hue
- spatial regions: one per glyph
- aligned: full glyph, lowest bar component
- unaligned: other bar components
- task
- part-to-whole relationship
- scalability
- several to one dozen levels for stacked attrib
[Using Visualization to Understand the Behavior of Computer Systems. Bosch. Ph.D. thesis, Stanford Computer Science, 200 I.]

Idioms: normalized stacked bar chart

- task
- part-to-whole judgements
- normalized stacked bar chart
- stacked bar chart, normalized to full vert height
- single stacked bar equivalent to full pie
- high information density: requires narrow rectangle
- pie chart

-information density: requires large circle

Idioms: pie chart, coxcomb chart

- pie chart
- area marks with angle channel
-accuracy: angle/area/arclength less accurate than line length

- data
- I categ key attrib, I quant value attrib
- task
- part-to-whole judgements

- coxcomb chart
- more direct analog to bar charts
- line marks, radial layout

Coxcomb: perception

- encode: ID length
- decode/perceive: 2D area
- nonuniform line/sector width as length increases

- so area variation is nonlinear wrt line mark length!
- bar chart safer: uniform width, so area is linear with line mark length
radial \& rectilinear bars: uniform width as length increases
-both radial \& rectilinear cases

Idiom: glyphmaps

- rectilinear good for linear vs nonlinear trends

Θ Axis Orientation

[Glyph-maps for Visually Exploring Temporal Patterns in Climate Data and Models.Wickham, Hofmann, Wickham, and Cook. Environmetrics 23:5 (2012), 382-393.]

Idiom: heatmap

- two keys, one value
- data
- 2 categ attribs (gene, experimental condition)
- I quant attrib (expression levels)
-marks: area
- separate and align in 2D matrix
- indexed by 2 categorical attributes
- channels

-task

- color by quant attrib
- (ordered diverging colormap)
- find clusters, outliers
- scalability
- IK categorical levels, IM items; ~ 10 quantitative attribute levels

Arrange tables

Θ Express Values

Θ Separate, Order, Align Regions
\rightarrow Separate
\rightarrow Order

\rightarrow Align
!

Θ Axis Orientation
\rightarrow Rectilinear \rightarrow Radial

Idiom: choropleth map

- use given spatial data
- when central task is understanding spatial relationships
- data
- geographic geometry
- table with I quant attribute per region
- encoding

http://bl.ocks.org/mbostock/4060606
- use given geometry for area mark boundaries
-sequential segmented colormap [more later]

Beware: Population maps trickiness!

- spurious correlations: most attributes just show where people live
- consider when to normalize by population density
- encode raw data values
- tied to underlying population
- but should use normalized values
- eg unemployed people per 100 citizens

- general issue

-absolute counts vs relative/normalized data

- failure to normalize is common error

PET PEEVE \#208:
GEOGRAPHIC PROFIE MAPS WHICH ARE BASICALLY JUST POPULATION MAPS
[https://xkcd.com/ / / 38]

Idiom: topographic map

- data
- geographic geometry
- scalar spatial field
- I quant attribute per grid cell
- derived data
- isoline geometry
- isocontours computed for specific levels of scalar values

Land Information New Zealand Data Service

Idioms: isosurfaces, direct volume rendering

- data
- scalar spatial field
- I quant attribute per grid cell
- task
- shape understanding, spatial relationships
- isosurface
- derived data: isocontours computed for specific levels of scalar values
- direct volume rendering
-transfer function maps scalar values to color, opacity

- no derived geometry

[^1][Multidimensional Transfer Functions for Volume Rendering. Kniss, Kindlmann, and Hansen. In The Visualization Handbook,

Vector and tensor fields

- data
- many attribs per cell
- idiom families
- flow glyphs
- purely local
- geometric flow
- derived data from tracing particle trajectories
- sparse set of seed points
-texture flow
- derived data, dense seeds
-feature flow
- global computation to detect features

LIC
OSTR
GSTR
[Comparing 2D vector field visualization methods:A user study. Laidlaw et al. IEEE Trans. Visualization and Computer Graphics (TVCG) II:I (2005), 59-70.]

[Topology tracking for the visualization of time-dependent two-dimensional flows. Tricoche, Wischgoll, Scheuermann, and Hagen. Computers \& Graphics 26:2 (2002), 249-257.]

Idiom: similarity-clustered streamlines

- data
- 3D vector field
- derived data (from field)
- streamlines: trajectory particle will follow
- derived data (per streamline)
- curvature, torsion, tortuosity
- signature: complex weighted combination
- compute cluster hierarchy across all signatures
- encode: color and opacity by cluster
- tasks
- find features, query shape
- scalability
- millions of samples, hundreds of streamlines

[Similarity Measures for

 Enhancing Interactive Streamline Seeding. McLoughlin,.Jones, Laramee, Malki, Masters, and. Hansen. IEEE Trans.Visualization and Computer Graphics 19:8 (2013), I342-I353.]
Arrange spatial data

Use Given

\rightarrow Geometry
\rightarrow Geographic
\rightarrow Other Derived

\rightarrow Spatial Fields
\rightarrow Scalar Fields (one value per cell)
\rightarrow Isocontours
\rightarrow Direct Volume Rendering

\rightarrow Vector and Tensor Fields (many values per cell)
\rightarrow Flow Glyphs (local)
\rightarrow Geometric (sparse seeds)
\rightarrow Textures (dense seeds)
\rightarrow Features (globally derived)

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, Nov 2014.
- Chap 7:Arrange Tables, Chap 8:Arrange Spatial Data
- Visualizing Data. Cleveland. Hobart Press, I 993.
- A Brief History of Data Visualization. Friendly. 2008. http://www.datavis.ca/milestones
- How Maps Work: Representation,Visualization, and Design. MacEachren. Guilford Press, I 995.
- Overview of visualization. Schroeder and. Martin. In The Visualization Handbook, edited by Charles Hansen and Christopher Johnson, pp. 3-39. Elsevier, 2005.
- Real-Time Volume Graphics. Engel, Hadwiger, Kniss, Reza-Salama, and Weiskopf. AK Peters, 2006.
- Overview of flow visualization.Weiskopf and Erlebacher. In The Visualization Handbook, edited by Charles Hansen and Christopher Johnson, pp. 26I-278. Elsevier, 2005.

Visualization Analysis \& Design, Half-Day Tutorial

- Session 1
- Analysis: What, Why, How
- Marks and Channels
- Arrange Tabular \& Spatial Data
- Session 2
- Arrange Networks and Trees
- Map Color and Other Channels
- Manipulate \& Facet
-Reduce: Filter, Aggregate

Break
@tamaramunzner @tamara@vis.social

Arrange networks and trees

Θ Node-Link Diagrams
Connection Marks
\checkmark NETWORKS \downarrow TREES

Θ Adjacency Matrix
Derived Table
\checkmark NETWORKS \downarrow TREES

Θ Enclosure
Containment Marks
\times NETWORKS $\quad>$ TREES
$\square \square \square$

Idiom: force-directed placement

- visual encoding: node-link diagram
- link connection marks, node point marks
- algorithm: energy minimization
- analogy: nodes repel, links draw together like springs
- optimization problem: minimize crossings
- spatial position: no meaning directly encoded
- sometimes proximity meaningful
- sometimes proximity arbitrary, artifact of layout algorithm
- tasks

- explore topology; locate paths, clusters
- scalability
-node/edge density E $<4 \mathrm{~N}$

Idiom: adjacency matrix view

- data: network
-transform into same data/encoding as heatmap
- derived data: table from network

[NodeTrix: a Hybrid Visualization of Social Networks. Henry, Fekete, and McGuffin. IEEE TVCG (Proc. InfoVis) I3(6):I302-I 309, 2007.]
- I quant attrib
- weighted edge between nodes
-2 categ attribs: node list $\times 2$
- visual encoding
- cell shows presence/absence of edge
- scalability
- IK nodes, IM edges

[^2]
Connection vs. adjacency comparison

- adjacency matrix strengths
- predictability, scalability, supports reordering
- some topology tasks trainable
- node-link diagram strengths
-topology understanding, path tracing
- intuitive, no training needed

http://www.michaelmcguffin.com/courses/vis/patternsInAdjacencyMatrix.png
- empirical study
- node-link best for small networks
- matrix best for large networks
- if tasks don't involve topological structure!
[On the readability of graphs using node-link and matrix-based representations: a controlled experiment and statistical analysis. Ghoniem, Fekete, and Castagliola. Information Visualization 4:2 (2005), I I4-I35.]

Idiom: radial node-link tree

- data
- tree
- encoding
- link connection marks
- point node marks
-radial axis orientation
- angular proximity: siblings
- distance from center: depth in tree
- tasks
- understanding topology, following paths

- scalability
- IK - IOK nodes

Idiom: treemap

- data
- tree
- I quant attrib at leaf nodes
- encoding
- area containment marks for hierarchical structure
-rectilinear orientation
- size encodes quant attrib
- tasks
- query attribute at leaf nodes
- scalability
- IM leaf nodes

Link marks: Connection and containment

- marks as links (vs. nodes)
- common case in network drawing
Θ Connection

- ID case: connection
- ex: all node-link diagrams
- emphasizes topology, path tracing
- networks and trees
-2D case: containment
- ex: all treemap variants
- emphasizes attribute values at leaves (size coding)
- only trees

Node-Link Diagram
Θ Containment
-•••

Treemap

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, Nov 2014. - Chap 9:Arrange Networks and Trees
- Visual Analysis of Large Graphs: State-of-the-Art and Future Research Challenges. von Landesberger et al. Computer Graphics Forum 30:6 (201I), I7I9-I749.
- Simple Algorithms for Network Visualization:A Tutorial. McGuffin.Tsinghua Science and Technology (Special Issue on Visualization and Computer Graphics) I7:4 (2012), 383-398.
- Drawing on Physical Analogies. Brandes. In Drawing Graphs: Methods and Models, LNCS Tutorial, 2025, edited by M. Kaufmann and D.Wagner, LNCS Tutorial, 2025, pp. 7I-86. Springer-Verlag, 200 I.
- http://www.treevis.net Treevis.net:A Tree Visualization Reference. Schulz. IEEE Computer Graphics and Applications 3I:6 (201I), II-I5.
- Perceptual Guidelines for Creating Rectangular Treemaps. Kong, Heer, and Agrawala. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis) 16:6 (2010), 990-998.

Visualization Analysis \& Design, Half-Day Tutorial

- Session 1
- Analysis: What, Why, How
- Marks and Channels
- Arrange Tabular \& Spatial Data
- Session 2
- Arrange Networks and Trees
- Map Color and Other Channels
- Manipulate \& Facet
-Reduce: Filter, Aggregate

Idiom design choices: First half

Encode
Θ Arrange
\rightarrow Express

\rightarrow Order

\rightarrow Use

\rightarrow Separate

\rightarrow Align

Θ Map
from categorical and ordered attributes

Decomposing color

- first rule of color: do not talk about color!
-color is confusing if treated as monolithic

Decomposing color

- first rule of color: do not talk about color!
-color is confusing if treated as monolithic
- decompose into three channels

Decomposing color

- first rule of color: do not talk about color!
-color is confusing if treated as monolithic
- decompose into three channels
- ordered can show magnitude
- luminance
- saturation
- categorical can show identity
- hue

Decomposing color

- first rule of color: do not talk about color!
-color is confusing if treated as monolithic
- decompose into three channels
- ordered can show magnitude
- luminance
- saturation
- categorical can show identity - hue
- perceptual colorspace, in contrast to three channels of RGB

Decomposing color

- first rule of color: do not talk about color!
-color is confusing if treated as monolithic
- decompose into three channels
- ordered can show magnitude
- luminance
- saturation
- categorical can show identity - hue
- perceptual colorspace, in contrast to three channels of RGB

Luminance

- need luminance for edge detection
-fine-grained detail only visible through luminance contrast

[Seriously Colorful: Advanced Color Principles \& Practices. Stone.Tableau Customer Conference 2014.]

Luminance

- need luminance for edge detection
- fine-grained detail only visible through luminance contrast
- legible text requires luminance contrast!

Categorical color: Discriminability constraints

- noncontiguous small regions of color: only 6-12 bins

[Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms. Sinha and Meller. BMC Bioinformatics, 8:82, 2007.]

Ordered color: Rainbow is poor default

- problems
- perceptually unordered
- perceptually nonlinear

Ordered color: Rainbow is poor default

- problems
- perceptually unordered
- perceptually nonlinear

Ordered color: Rainbow is poor default

- problems
- perceptually unordered
- perceptually nonlinear
- benefits
- fine-grained structure visible and nameable

[A Rule-based Tool for Assisting Colormap Selection. Bergman,. Rogowitz, and. Treinish. Proc. IEEE Visualization (Vis), pp. I I 8-I 25, I995.]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/peoplel/I/loydt/color/color.HTM]

Ordered color: Rainbow is poor default

- problems
- perceptually unordered
- perceptually nonlinear
- benefits
- fine-grained structure visible and nameable
- alternatives
- large-scale structure: fewer hues

[A Rule-based Tool for Assisting Colormap Selection. Bergman,. Rogowitz, and. Treinish. Proc. IEEE Visualization (Vis), pp. I I 8-I 25, I995.]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/I/Iloydt/color/color.HTM]

Ordered color: Rainbow is poor default

- problems
- perceptually unordered
- perceptually nonlinear
- benefits
- fine-grained structure visible and nameable
- alternatives
- large-scale structure: fewer hues
-fine structure: multiple hues with monotonically increasing luminance [eg viridis]

[A Rule-based Tool for Assisting Colormap Selection. Bergman,. Rogowitz, and. Treinish. Proc. IEEE Visualization (Vis), pp. I I 8-I 25, I995.]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people//IIloydt/color/color.HTM]

Viridis / Magma

- monotonically increasing luminance, perceptually uniform
- colorful, colourblind-safe -R, python, D3

https://cran.r-project.org/web/packages/ viridis/vignettes/intro-to-viridis.html

Ordered color: Rainbow is poor default

- problems
- perceptually unordered
- perceptually nonlinear
- benefits
- fine-grained structure visible and nameable
- alternatives
- large-scale structure: fewer hues
- fine structure: multiple hues with monotonically increasing luminance [eg viridis]
- categorical: segmented saturated rainbow is good!

[A Rule-based Tool for Assisting Colormap Selection. Bergman,. Rogowitz, and. Treinish. Proc. IEEE Visualization (Vis), pp. I I 8-I 25, I995.]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/I/Iloydt/color/color.HTM]

Colormaps

\rightarrow Categorical
$\square \square$
\rightarrow Ordered
\rightarrow Sequential

\rightarrow Diverging

Sequential
after [Color Use Guidelines for Mapping and Visualization. Brewer, 1994. http:// www.personal.psu.edu/faculty/c/a/cab38/ ColorSch/Schemes.html]

Colormaps

\rightarrow Categorical
$\square \square \square$
\rightarrow Ordered

\rightarrow Bivariate

use with care if more than two levels (binary)!

Binary

Categorical

Diverging

Colormaps

\rightarrow Categorical

\rightarrow Ordered

\rightarrow Bivariate

- color channel interactions

- size heavily affects salience
- small regions need high saturation
- large need low saturation
- saturation \& luminance: 3-4 bins max
- also not separable from transparency

after [Color Use Guidelines for Mapping and Visualization. Brewer, I994. http:// www.personal.psu.edu/faculty/c/a/cab38/ ColorSch/Schemes.html]

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, Nov 2014.
- Chap 10: Map Color and Other Channels
- ColorBrewer, Brewer.
- http://www.colorbrewer2.org
- Color In Information Display. Stone. IEEEVis Course Notes, 2006.
- http://www.stonesc.com/Vis06
- A Field Guide to Digital Color. Stone.AK Peters, 2003.
- Rainbow Color Map (Still) Considered Harmful. Borland and Taylor. IEEE Computer Graphics and Applications 27:2 (2007), 14-I7.
- Visual Thinking for Design.Ware. Morgan Kaufmann, 2008.
- Information Visualization: Perception for Design, 3rd edition. Ware. Morgan Kaufmann /Academic Press, 2004.
- http://www.r-bloggers.com/using-the-new-viridis-colormap-in-r-thanks-to-simon-garnier/

Visualization Analysis \& Design, Half-Day Tutorial

- Session 1
- Analysis: What, Why, How
- Marks and Channels
- Arrange Tabular \& Spatial Data
- Session 2
- Arrange Networks and Trees
- Map Color and Other Channels
- Manipulate \& Facet
-Reduce: Filter, Aggregate

How?

Encode

Θ Map

from categorical and ordered attributes
\rightarrow Color
\rightarrow Hue \rightarrow Saturation \rightarrow Luminance
\rightarrow Size, Angle, Curvature, ...
-■ (1/ニ |))
\rightarrow Shape
$+0 \square \Delta$
\rightarrow Motion
Direction, Rate, Frequency, ...

How to handle complexity: I previous strategy +3 more
\rightarrow Derive

- derive new data to show within view
- change view over time
- facet across multiple views
- reduce items/attributes within single view

Manipulate
Θ Change

Θ Select

Θ Navigate〈 \because •
Θ Juxtapose $\quad \Theta$ Filter

Θ Aggregate

Θ Superimpose

Θ Partition

\rightarrow Embed

Reduce

Idiom: Change order/arrangement

- what: simple table
- how: data-driven reordering
- why: find extreme values, trends

Idiom: Change order

System: DataStripes

- what: table with many attributes
- how: data-driven reordering by selecting column
- why: find correlations between attributes

Navigate: Changing item visibility

- change viewpoint
-changes which items are visible within view
- camera metaphor
- zoom
- geometric zoom: familiar semantics
- semantic zoom: adapt object representation based on available pixels » dramatic change, or more subtle one
- pan/translate
- rotate
- especially in 3D
- constrained navigation
- often with animated transitions
- often based on selection set

Navigate

\rightarrow Item Reduction
\rightarrow Zoom
Geometric or Semantic

\rightarrow Pan/Translate

\rightarrow Constrained

Navigate: Reducing attributes

- continuation of camera metaphor - slice
- show only items matching specific value for given attribute: slicing plane
- axis aligned, or arbitrary alignment - Cut
- show only items on far slide of plane from camera
- project
- change mathematics of image creation
- orthographic
- perspective
- many others: Mercator, cabinet, ...

Manipulate

Θ Change over Time

Θ Select

Θ Navigate
\rightarrow Item Reduction $\quad \rightarrow$ Attribute Reduction

\rightarrow Slice

\rightarrow Cut

\rightarrow Project

Facet
Θ Juxtapose

Partition

Θ Superimpose

Juxtapose and coordinate views

\rightarrow Share Encoding: Same/Different
\rightarrow Linked Highlighting

\rightarrow Share Data: All/Subset/None

\rightarrow Share Navigation

Idiom: Linked highlighting

- see how regions contiguous in one view are distributed within another
- powerful and pervasive interaction idiom
- encoding: different
- multiform
- data: all shared
- all items shared
-different attributes across the views

- aka: brushing and linking

Idiom: Overview-detail views

System: Google Maps

- encoding: same or different
-ex: same (birds-eye map)
- data: subset shared
-viewpoint differences: subset of data items
- navigation: shared
-bidirectional linking
- other differences
-(window size)

[A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 4I:I (2008), I-3I.]

Idiom: Small multiples

- encoding: same
-ex: line charts
- data: none shared
- different slices of dataset
- items or attributes

Juxtapose views: tradeoffs

- juxtapose costs
- display area
- 2 views side by side: each has only half the area of one view
- juxtapose benefits
- cognitive load: eyes vs memory
- lower cognitive load: move eyes between 2 views
- higher cognitive load: compare single changing view to memory of previous state

Juxtapose vs animate

- animate: hard to follow if many scattered changes or many frames
- vs easy special case: animated transitions

LPSLL37_1

Juxtapose vs animate

- animate: hard to follow if many scattered changes or many frames
- vs easy special case: animated transitions
- juxtapose: easier to compare across small multiples
- different conditions (color), same gene (layout)

Coordinate views: Design choice interaction

		Data				
		All	Subset	None		
	Same	Redundant				
	Different	$\\|\\| \ldots \cdot$ Multiform	$\begin{gathered} \text { Multiform, } \\ \text { Overview/ } \\ \text {. . Detail } \end{gathered}$	No Linkage		

Partition into views

- how to divide data between views
- split into regions by attributes
- encodes association between items using spatial proximity
- order of splits has major implications for what patterns are visible

Θ Partition into Side-by-Side Views

Partitioning: List alignment

- single bar chart with grouped bars
- split by state into regions
- complex glyph within each region showing all ages
- compare: easy within state, hard across ages

- small-multiple bar charts
- split by age into regions
- one chart per region
- compare: easy within age, harder across states

Superimpose layers

- layer: set of objects spread out
Θ Superimpose Layers over region
- each set is visually distinguishable group
-extent: whole view
- design choices
-how many layers, how to distinguish?
- encode with different, nonoverlapping channels
- two layers achieveable, three with careful design
- small static set, or dynamic from many possible?

Static visual layering

- foreground layer: roads
- hue, size distinguishing main from minor
-high luminance contrast from background
- background layer: regions

- desaturated colors for water, parks, land areas
- user can selectively focus attention
[Get it right in black and white. Stone. 2010.
http://www.stonesc.com/wordpress/2010/03/get-it-right-in-black-and-white]

Static visual layering

- foreground layer: roads
-hue, size distinguishing main from minor
-high luminance contrast from background
- background layer: regions
- desaturated colors for water, parks, land areas
- user can selectively focus attention
- "get it right in black and white"
-check luminance contrast with greyscale view

[Get it right in black and white. Stone. 2010.
http://www.stonesc.com/wordpress/2010/03/get-it-right-in-black-and-white]

Idiom: Trellis plots

- superimpose within same frame
- color code by year
- partitioning
- split by site, rows are wheat varieties
- main-effects ordering
- derive value of median for group, use to order
- order rows within view by variety median
- order views themselves by site median

Dynamic visual layering

- interactive based on selection
- one-hop neighbour highlighting demos: click vs hover (lightweight)

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, 2014.
-Chap II: Manipulate View \& Chap I2: Facet Into Multiple Views
- Animated Transitions in Statistical Data Graphics. Heer and Robertson. IEEE Trans. on Visualization and Computer Graphics (Proc. InfoVis 07) 13:6 (2007), I240- I247.
- Smooth and efficient zooming and panning. van Wijk and Nuij. Proc. IEEE Symp. Information Visualization (InfoVis), pp. I5-22, 2003.
- Starting Simple - adding value to static visualisation through simple interaction. Dix and Ellis. Proc.Advanced Visual Interfaces (AVI), pp. I24134, I998.
- A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 4I:I (2008), I-3I.
- Zooming versus multiple window interfaces: Cognitive costs of visual comparisons. Plumlee and Ware. ACM Trans. on Computer-Human Interaction (ToCHI) I3:2 (2006), I79-209.
- Exploring the Design Space of Composite Visualization. Javed and Elmqvist. Proc. Pacific Visualization Symp. (PacificVis), pp. I-9, 20 I 2.
- Visual Comparison for Information Visualization. Gleicher, Albers, Walker, Jusufi, Hansen, and Roberts. Information Visualization 10:4 (201I), 289-309.
- Cross-Filtered Views for Multidimensional Visual Analysis. Weaver. IEEE Trans.Visualization and Computer Graphics I6:2 (Proc. InfoVis 20IO), I92-204, 20 IO.
- Linked Data Views. Wills. In Handbook of Data Visualization, Computational Statistics, edited by Unwin, Chen, and Härdle, pp. 21624I. Springer-Verlag, 2008.
- Glyph-based Visualization: Foundations, Design Guidelines, Techniques and Applications. Borgo, Kehrer, Chung, Maguire, Laramee, Hauser, Ward, and Chen. In Eurographics State of the Art Reports, pp. 39-63, 2013.

Visualization Analysis \& Design, Half-Day Tutorial

- Session 1
- Analysis: What, Why, How
- Marks and Channels
- Arrange Tabular \& Spatial Data
- Session 2
- Arrange Networks and Trees
- Map Color and Other Channels
- Manipulate \& Facet
-Reduce: Filter, Aggregate

Reduce items and attributes

- reduce/increase: inverses
- filter
- pro: straightforward and intuitive
- to understand and compute
- con: out of sight, out of mind
- aggregation
- pro: inform about whole set - con: difficult to avoid losing signal
- not mutually exclusive
- combine filter, aggregate
- combine reduce, change, facet

Reducing Items and Attributes

Reduce

\rightarrow Items

\rightarrow Attributes

Θ Aggregate
\rightarrow Items

\rightarrow Attributes

Θ Filter

\oplus Aggregate

\oplus Embed

Idiom: cross filtering

System: Crossfilter

- item filtering
- coordinated views/controls combined
- all scented histogram bisliders update when any ranges change

[http://square.github.io/crossfilter/]

Idiom: histogram

- static item aggregation
- task: find distribution
- data: table
- derived data
-new table: keys are bins, values are counts
- bin size crucial

-pattern can change dramatically depending on discretization
-opportunity for interaction: control bin size on the fly

Idiom: scented widgets

- augmented widgets show information scent
- better cues for information foraging: show whether value in drilling down further vs looking elsewhere
- concise use of space: histogram on slider

|l|l|- tor visis ||III reency
[Scented Widgets: Improving Navigation Cues with Embedded Visualizations. Willett, Heer, and Agrawala. IEEE TVCG (Proc. InfoVis 2007) I3:6 (2007), I I 29-I I 36.]

Idiom: Continuous scatterplot

- static item aggregation
- data: table
- derived data: table
- key attribs x, y for pixels
- quant attrib: overplot density
- dense space-filling 2D matrix
- color: sequential categorical hue + ordered luminance colormap
- scalability
- no limits on overplotting: millions of items

Spatial aggregation

- MAUP: Modifiable Areal Unit Problem
-changing boundaries of cartographic regions can yield dramatically different results -zone effects

[http://www.e-education.psu/edu/geog486/14 p7.html, Fig 4.cg.6]

-scale effects

Idiom: Hierarchical parallel coordinates

- dynamic item aggregation
- derived data: hierarchical clustering
- encoding:
-cluster band with variable transparency, line at mean, width by min/max values
- color by proximity in hierarchy

[Hierarchical Parallel Coordinates for Exploration of Large Datasets. Fua, Ward, and Rundensteiner. Proc. IEEE Visualization Conference (Vis '99), pp. 43- 50, I999.]

Dimensionality reduction

- attribute aggregation
- derive low-dimensional target space from high-dimensional measured space - use when you can't directly measure what you care about
- true dimensionality of dataset conjectured to be smaller than dimensionality of measurements
- latent factors, hidden variables

Tumor
 Measurement Data

Idiom: Dimensionality reduction for documents

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, 2014.
-Chap I3: Reduce Items and Attributes
- Hierarchical Aggregation for Information Visualization: Overview, Techniques and Design Guidelines. Elmqvist and Fekete. IEEE Transactions on Visualization and Computer Graphics 16:3 (2010), 439-454.
- A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 4 I:I (2008), I-3I.
- A Guide to Visual Multi-Level Interface Design From Synthesis of Empirical Study Evidence. Lam and Munzner. Synthesis Lectures on Visualization Series, Morgan Claypool, 2010.

What?

Why?

Θ Map
from categorical and ordered attributes
\rightarrow Color
\rightarrow Hue \rightarrow Saturation \rightarrow Luminance
 ■-
\rightarrow Size, Angle, Curvature, .
-■ I
\rightarrow Shape

What?

Why?

How?

Θ Partition $\quad \Theta$ Aggregate

Θ Embed = Whand

More information

- this tutorial
http://www.cs.ubc.ca/~tmm/talks.htm|\#halfdaycourse23
- book
http://www.cs.ubc.ca/~tmm/vadbook
- http://www.crcpress.com/product/isbn/978|466508910
- illustration acknowledgement: Eamonn Maguire

Visualization Analysis and Design. Munzner. CRC Press, AK Peters Visualization Series, 2014.

M@tamara@vis.social
@ @tamaramunzner

[^0]: Same Stats, Different Graphs: Generating

[^1]: [Interactive Volume Rendering Techniques. Kniss. Master's thesis, University of Utah Computer Science, 2002.]

[^2]: [Points of view: Networks.
 Gehlenborg and Wong.
 Nature Methods 9:I |5.]

