Analysis framework: Four levels, three questions

- domain situation: who are the target users?
- abstraction: translate from specific domain to vocabulary of vis
- task: what is shown? data abstraction
- why is the user looking at it? task abstraction

Analysis framework: Four levels, three questions

- domain situation: who are the target users?
- abstraction: translate from specific domain to vocabulary of vis
- idiom: how is it shown?
- visual encoding: idiom: how to draw
- interaction: idiom: how to manipulate

Analysis framework: Four levels, three questions

- domain situation: who are the target users?
- abstraction: translate from specific domain to vocabulary of vis
- idiom: how is it shown?
- virtual encoding: idiom: how to draw
- interaction: idiom: how to manipulate

Analysis framework: Four levels, three questions

- domain situation: who are the target users?
- abstraction: translate from specific domain to vocabulary of vis
- idiom: how is it shown?
- virtual encoding: idiom: how to draw
- interaction: idiom: how to manipulate

Analysis framework: Four levels, three questions

- domain situation: who are the target users?
- abstraction: translate from specific domain to vocabulary of vis
- idiom: how is it shown?
- virtual encoding: idiom: how to draw
- interaction: idiom: how to manipulate

Why represent all the data?
Computer-based visualization systems provide visual representations designed to help people carry out tasks more effectively.

- summaries lose information, details matter
 - confirm expected and find unexpected patterns
 - assess validity of statistical model

Why analyze?
• imposes structure on huge design space
• scaffold to help you think systematically about choices
• analyzing existing as stepping stone to designing new
• most possibilities ineffective for particular task/class combination
•...
Data and Dataset Types

Attributes

Items

Items

Trees

Attributes (columns)

Items

Networks

Link

Node

Position

Dataset Types
• visualization vs computer graphics
– geometry is design decision

Attributes (columns)

Items

Multidimensional Table

Value in cell

Grid of positions

Geometry (Spatial)

Position

Problem-driven work (design study)

Design Studies: Lessons learned after 21 of them

• definitions

9-stage framework

• 32 pitfalls

and how to avoid them

Attribute types

• visualization vs computer graphics
– geometry is design decision

Ordering Direction

→ Sequential → Diverging → Cyclic

Three major datatypes

Three major datatypes

Three major datatypes

Three major datatypes

Dataset Types

Tables

Networks

Fields (Continuous)

Geometry (Spatial)

• {action, target} pairs
– discover distribution
– compare trends
– locate outliers
– browse topology

Trends

A C T R I B U T E S

Why?

How?

What?

Why is validation difficult?
• different ways to get it wrong at each level

Why is validation difficult?
• solution: use methods from different fields at each level

Why is validation difficult?
• solution: use methods from different fields at each level

Why is validation difficult?
• solution: use methods from different fields at each level

What?

Why?

How?
Derive

• don’t necessarily just draw what you’re given!
 – decide what the right thing to show is
 – create it with a good skeleton

Further reading

 – Group: Interactive Visualizations
 – Group: J. Phoebe D. Knierim

Visual encoding

• analyze idiom structure

Definitions: Marks and channels

• marks
 – geometric primitives

• channels
 – control appearance of marks

• channel properties
different types of information that can be mapped to human perceptual systems.

Definitions: Marks and channels

• marks
 – geometric primitives

• channels
 – control appearance of marks

Visual encoding

• analyze idiom structure as combination of marks and channels

Further reading

 – Group: Interactive Visualizations
 – Group: J. Phoebe D. Knierim

Visual encoding

• analyze idiom structure

Definitions: Marks and channels

• marks
 – geometric primitives

• channels
 – control appearance of marks

• channel properties
different types of information that can be mapped to human perceptual systems.
Visual encoding
- Analyze idiom structure as combination of marks and channels

1. Vertical position
2. Horizontal position
3. Color hue

Popout
- Find the red dot
 - How long does it take?

Channels: Rankings
- Position on common scale
- Spatial region
- Color hue
- Size
- Area
- Depth (3D position)
- Volume (3D size)
- Tilt/angle
- Magnitude

Separability vs. Integrality
- Fully separable
- Some interference
- Some/significant interference
- Major interference

1. 2 groups each
2. 2 groups each
3. 3 groups total: integral area
4. 4 groups total: integral base

Popout
- Find the red dot
 - How long does it take?
Arrange Tables
- Tilt/angle
- Rectilinear
- Separate
- Dense

Channels:
- Parallel
- Ordered

Idiom: bar chart
- one key, one value
- data
- 1 categ attrib, 1 quant attrib
- mark: lines
- channels
- length to value (proximity, shadow direction,...)

Visualize and analyze: data
Express Values
Separate, Order, Align Regions
Axis Orientation
Layout Density

• arrangement: fixed and ordered
- many channels
- same values as other
- tasks
- find trend
- generalize marks emphasize ordering of items along key axes
- by explicitly showing relationship between item and item next

Arrange spatial data
- several to one dozen levels for stacked attrib

Idiom: scatterplot
- express values
- quantitative attributes
- no keys, only values
- data
- 2 quant attribs
- vs
- order and align regions

Idiom: stacked bar chart
- one more key
- data
- 2 categ attrib, 1 quant attrib
- mark: vertical stack of line marks
- channels
- length to value (proximity, shadow direction,...)
- task
- compare, lookup values
- scalability
- dozens to one dozen levels for key attrib

Idiom: line chart / dot plot
- one key, one value
- data
- 2 quant attribs
- mark: points
- channel
- tasks
- scalability
- hundreds of items

Some keys: categorical regions
- regions: contiguous bounded areas distinct from each other
- use space to separate (proximity)
- following expressiveness principle for categorical attributes
- use ordered attribute to order and align regions

Consider: x and y?

Session 1
- Arrange Networks and Trees
- Arrange Tables
- Arrange Spatial Data

Session 2
- Arrange Networks and Trees
- Arrange Tables
- Arrange Spatial Data

Visualization Analysis & Design, Half-Day Tutorial
- Munzner, Thomas.
- Visualization Analysis and Design.
Idiom: similarity-clustered streamlines

- **data**
 - 3D vector field
- **derived data** (from field)
 - streamline trajectory particle will follow
- **derived data** (per streamline)
 - curvature, torsion, texture flow
 - sign/aggregate complex weighted combination
 - compute cluster hierarchy across all signatures
 - encode color and opacity by cluster
- **tasks**
 - find features, query shape
 - scalability
 - millions of samples, hundreds of streamlines

Further reading

- Chip & Arrange Spatial Data

Idiom: sfdp (multi-level force-directed placement)

- **data**
 - original network
 - derived cluster hierarchy step it
- **considerations**
 - better algorithm for same encoding technique
 - some fundamental use of space
 - hierarchy and for algorithm speed/quality but not shown explicitly
- **scability**
 - nodes, edges: IK-10K
 - hardball problem still hits eventually

Further reading

- Chip & Arrange Spatial Data

Idiom: adjacency matrix view

- **data:** network
- **transform:** into same data/encoding as heatmap
- **derived data:** table from network
 - 1-quant attribute
 - weighted edge between nodes
 - 2- to-3D constraint: node list x 2
- **visual encoding**
 - cell shows presence/absence of edge
 - **scability**
 - IK nodes, IM edges

Further reading

- Chip & Arrange Spatial Data

Idiom: tree map

- **data**
 - tree
 - 1-quant attr at leaf nodes
- **encoding**
 - area containment marks for hierarchical structure
- **tasks**
 - query attribute at leaf nodes
 - scalability
 - IM leaf nodes

Further reading

- Chip & Arrange Spatial Data

Idiom: tree map

- **data**
 - tree
 - 1-quant attr at leaf nodes
- **encoding**
 - area containment marks for hierarchical structure
 - rectilinear orientation
 - area encodes quant attr
- **tasks**
 - query attribute at leaf nodes
 - scalability
 - IM leaf nodes

Further reading

- Chip & Arrange Spatial Data

Idiom: tree map

- **data**
 - tree
 - 1-quant attr at leaf nodes
- **encoding**
 - area containment marks for hierarchical structure
 - rectilinear orientation
 - area encodes quant attr
- **tasks**
 - query attribute at leaf nodes
 - scalability
 - IM leaf nodes

Further reading

- Chip & Arrange Spatial Data

Idiom: tree map

- **data**
 - tree
 - 1-quant attr at leaf nodes
- **encoding**
 - area containment marks for hierarchical structure
 - rectilinear orientation
 - area encodes quant attr
- **tasks**
 - query attribute at leaf nodes
 - scalability
 - IM leaf nodes

Further reading

- Chip & Arrange Spatial Data

Idiom: tree map

- **data**
 - tree
 - 1-quant attr at leaf nodes
- **encoding**
 - area containment marks for hierarchical structure
 - rectilinear orientation
 - area encodes quant attr
- **tasks**
 - query attribute at leaf nodes
 - scalability
 - IM leaf nodes

Further reading

- Chip & Arrange Spatial Data
Ordered color: Rainbow is poor default

- benefits
 - perceptually unordered
 - perceptually nonlinear

- problems
 - perceptually unordered
 - perceptually nonlinear

Decomposing color

- first rule of color: do not talk about color!
 - color is confusing if treated as monolithic

- decompose into three channels
 - ordered can show magnitude
 - luminance
 - saturation
 - categorical can show identity
 - hue

- benefits
 - perceptually uniform
 - perceptually nonlinear

Decomposing color

- first rule of color: do not talk about color!
 - color is confusing if treated as monolithic

- decompose into three channels
 - ordered can show magnitude
 - luminance
 - saturation
 - categorical can show identity
 - hue

- benefits
 - perceptually uniform
 - perceptually nonlinear

Decomposing color

- first rule of color: do not talk about color!
 - color is confusing if treated as monolithic

- decompose into three channels
 - ordered can show magnitude
 - luminance
 - saturation
 - categorical can show identity
 - hue

- benefits
 - perceptually uniform
 - perceptually nonlinear

Color Encoding

- Bivariate
 - hue
 - saturation

- Categorical
 - luminance

Luminance

- need luminance for edge detection

 - fine-grained detail only visible through luminance contrast

 - legible text requires luminance contrast!

 - HLS better than RGB for encoding but beware
 - L-lightness = L* luminance

Luminance

- need luminance for edge detection

 - fine-grained detail only visible through luminance contrast

 - legible text requires luminance contrast!

 - HLS better than RGB for encoding but beware
 - L-lightness = L* luminance

Categorical color: Discriminability constraints

- noncontiguous small regions of color: only 6-12 bins

- problems
 - perceptually unordered
 - perceptually nonlinear

- benefits
 - fine-grained structure visible and nameable

- alternatives
 - large-scale structure: fewer hues

Vinids / Magma

- monotonically increasing luminance, perceptually uniform

 - colorful, colourblind-safe

 - R, python, DJ

Color maps

- Sequential
 - ordered
 - diverging

- Categorical
 - ordered
 - sequential
 - diverging

- Diverging
 - with care if more than two levels (binary)

- Use with care if more than two levels (binary)!
More information

• this tutorial
 http://www.cs.ubc.ca/~tmm/talks.html#halfdaycourse20

• book
 http://www.cs.ubc.ca/~tmm/vadbook
 – 20% promo code for book+ebook combo: HVN17
 – Illustration acknowledgement: Eamonn Maguire

• full courses, papers, videos, software, talks
 http://www.cs.ubc.ca/group/infovis
 http://www.cs.ubc.ca/~tmm

Visualization Analysis and Design. Munzner.
@tamaramunzner