

A Nested Model for Visualization Design and Validation

Tamara Munzner University of British Columbia Department of Computer Science

How do you show your system is good?

- so many possible ways!
 - algorithm complexity analysis
 - field study with target user population
 - implementation performance (speed, memory)
 - informal usability study
 - laboratory user study
 - qualitative discussion of result pictures
 - quantitative metrics
 - requirements justification from task analysis
 - user anecdotes (insights found)
 - user community size (adoption)
 - visual encoding justification from theoretical principles

Contribution

- nested model unifying design and validation
 - guidance on when to use what validation method
 - different threats to validity at each level of model
- recommendations based on model

• wrong **problem**

• they don't do that

domain problem characterization

- wrong problem
 - they don't do that
- wrong abstraction
 - you're showing them the wrong thing

domain problem characterization

data/operation abstraction design

- wrong problem
 - they don't do that
- wrong abstraction
 - you're showing them the wrong thing
- wrong encoding/interaction technique
 - the way you show it doesn't work

domain problem characterization

data/operation abstraction design

encoding/interaction technique design

- wrong problem
 - they don't do that
- wrong abstraction
 - you're showing them the wrong thing
- wrong encoding/interaction technique
 - the way you show it doesn't work
- wrong **algorithm**
 - your code is too slow

domain problem characterization

data/operation abstraction design

encoding/interaction technique design

algorithm design

Match validation method to contributions

• each validation works for only one kind of threat to validity

hreat: wrong problem	
threat: bad data/operation abstraction	
threat: ineffective encoding/interaction technique	
threat: slow algorithm	

Analysis examples

MatrixExplorer. Henry and Fekete. InfoVis 2006.

observe and interview target users

justify encoding/interaction design

measure system time/memory

qualitative result image analysis

LiveRAC. McLachlan, Munzner, Koutsofios, and North. CHI 2008.

observe and interview target users

justify encoding/interaction design

qualitative result image analysis

field study, document deployed usage

An energy model for visual graph clustering. (LinLog) Noack. Graph Drawing 2003

qualitative/quantitative image analysis

Effectiveness of animation in trend visualization. Robertson et al. InfoVis 2008.

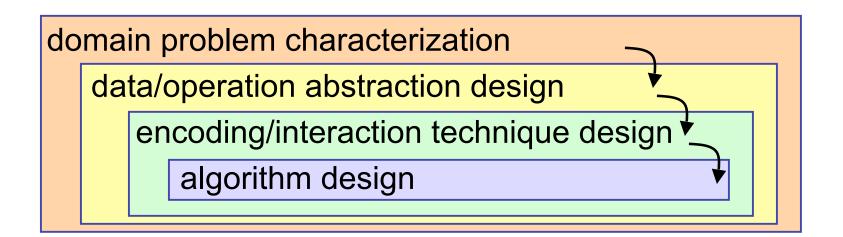
lab study, measure time/errors for operation

Interactive visualization of genealogical graphs. McGuffin and Balakrishnan. InfoVis 2005.

justify encoding/interaction design

qualitative result image analysis test on target users, get utility anecdotes

Flow map layout. Phan et al. InfoVis 2005.


justify encoding/interaction design

computational complexity analysis measure system time/memory

qualitative result image analysis

Nested levels in model

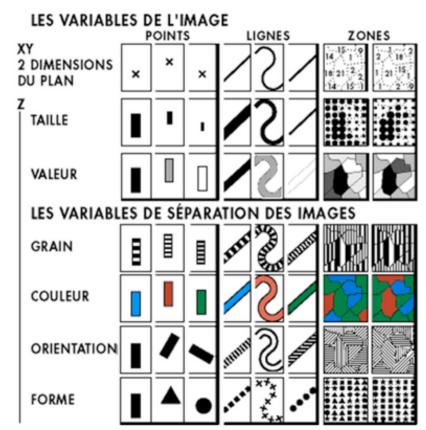
- output of upstream level —> input to downstream level
- challenge: upstream errors inevitably cascade
 - if poor abstraction choice made, even perfect technique and algorithm design will not solve intended problem

Characterizing domain problems

problem					
	data/op abstraction				
	enc/interact technique		e		
			algorithm		

- tasks, data, workflow of target users
 - problems: tasks described in domain terms
 - requirements elicitation is notoriously hard

Designing data/operation abstraction


problem					
	data/op abstraction				
	enc/interact technique		e		
			algorithm		

- mapping from domain vocabulary/concerns to abstraction
 - may require transformation!
- data types: data described in abstract terms
 - numeric tables, relational/network, spatial, ...
- **operations**: tasks described in abstract terms
 - generic
 - sorting, filtering, correlating, finding trends/outliers...
 - datatype-specific
 - path following through network...

Designing encoding, interaction techniques

problem data/op abstraction enc/interact technique algorithm

- visual encoding
 - marks, attributes, ...
 - extensive foundational work exists
- interaction
 - selecting, navigating, ordering, ...
 - significant guidance exists

Semiology of Graphics. Jacques Bertin, Gauthier-Villars 1967, EHESS 1998

Designing algorithms

problem						
	data/op abstraction					
		e	enc/interact technique	е		
			algorithm			

- well-studied computer science problem
 - create efficient algorithm given clear specification
 - no human-in-loop questions

Immediate vs. downstream validation

th	reat: wrong problem
	threat: bad data/operation abstraction
	threat: ineffective encoding/interaction technique
	threat: slow algorithm
	implement system

Domain problem validation

• immediate: ethnographic interviews/observations

threat: wrong problem validate: observe and interview target users
threat: bad data/operation abstraction
threat: ineffective encoding/interaction technique
threat: slow algorithm
implement system

Domain problem validation

downstream: adoption (weak but interesting signal)

threat: wrong problem validate: observe and interview target users	
threat: bad data/operation abstraction	
threat: ineffective encoding/interaction technique	
threat: slow algorithm	
implement system	
validate: observe adoption rates	

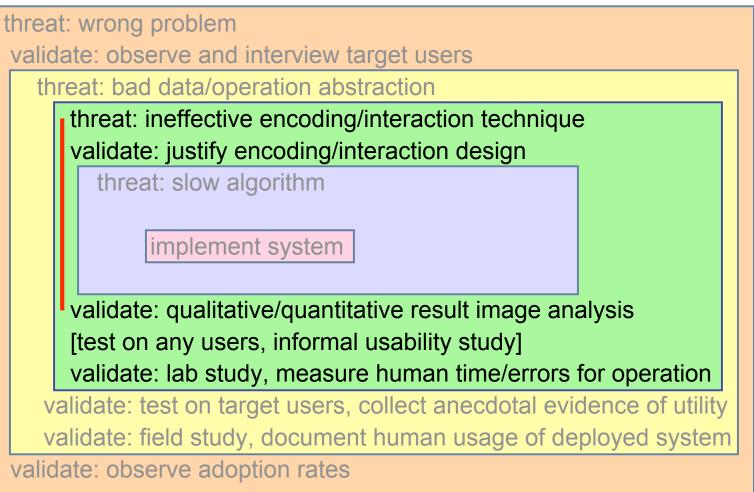
Abstraction validation

• downstream: can only test with target users doing real work

threat: wrong problem
validate: observe and interview target users
threat: bad data/operation abstraction
threat: ineffective encoding/interaction technique
threat: slow algorithm implement system
validate: test on target users, collect anecdotal evidence of utility validate: field study, document human usage of deployed system
validate: observe adoption rates

• immediate: justification useful, but not sufficient - tradeoffs

threat: wrong problem	
validate: observe and interview target users	
threat: bad data/operation abstraction	
threat: ineffective encoding/interaction technique	
validate: justify encoding/interaction design	
threat: slow algorithm	
implement system	
validate: test on target users, collect anecdotal evidence of util	-
validate: field study, document human usage of deployed syste	em
validate: observe adoption rates	

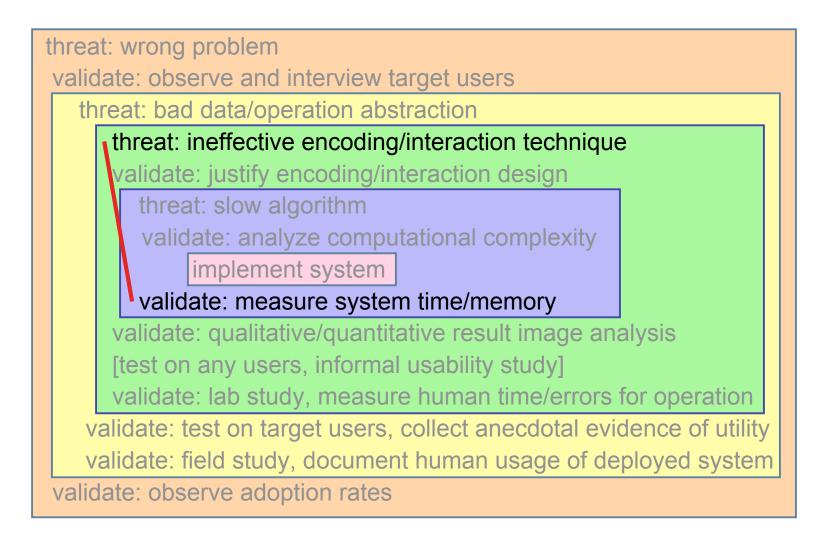

• downstream: discussion of result images very common

threat: wrong problem
validate: observe and interview target users
threat: bad data/operation abstraction
threat: ineffective encoding/interaction technique
validate: justify encoding/interaction design
threat: slow algorithm
implement system
validate: qualitative/quantitative result image analysis
validate: test on target users, collect anecdotal evidence of utility
validate: field study, document human usage of deployed system
validate: observe adoption rates

• downstream: studies add another level of rigor (and time)

reat: wrong problem
alidate: observe and interview target users
threat: bad data/operation abstraction
threat: ineffective encoding/interaction technique
validate: justify encoding/interaction design
threat: slow algorithm
implement system
validate: qualitative/quantitative result image analysis
validate: lab study, measure human time/errors for operation
validate: test on target users, collect anecdotal evidence of utility
validate: field study, document human usage of deployed system
alidate: observe adoption rates

- usability testing necessary for validity of downstream testing
 - not validation method itself!


Algorithm validation

• immediate vs. downstream here clearly understood in CS

threat: wrong problem
validate: observe and interview target users
threat: bad data/operation abstraction
threat: ineffective encoding/interaction technique
validate: justify encoding/interaction design
threat: slow algorithm
validate: analyze computational complexity
implement system
validate: measure system time/memory
validate: qualitative/quantitative result image analysis
[test on any users, informal usability study]
validate: lab study, measure human time/errors for operation
validate: test on target users, collect anecdotal evidence of utility
validate: field study, document human usage of deployed system
validate: observe adoption rates

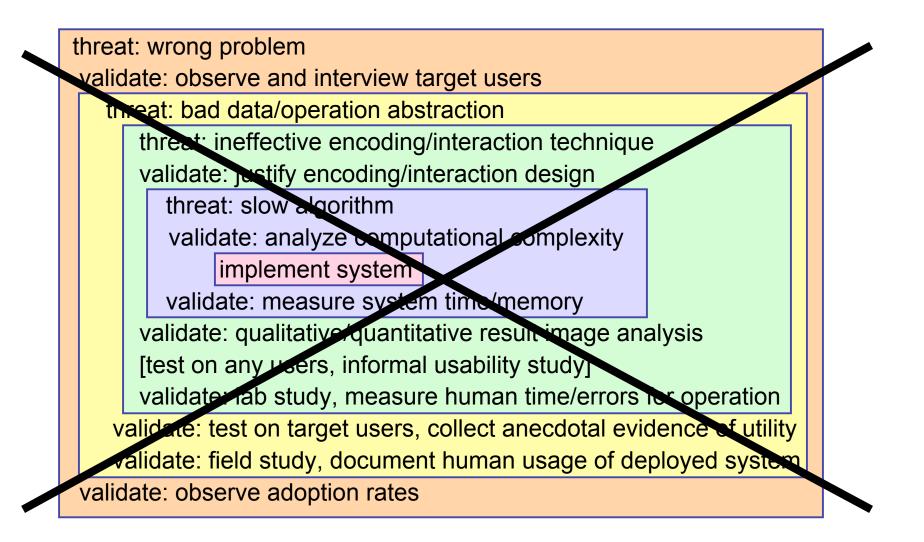
Avoid mismatches

can't validate encoding with wallclock timings

Avoid mismatches

can't validate abstraction with lab study

threat: wrong problem
validate: observe and interview target users
threat: bad data/operation abstraction
threat: ineffective encoding/interaction technique
validate: justify encoding/interaction design
threat: slow algorithm
validate: analyze computational complexity
implement system
validate: measure system time/memory
validate: qualitative/quantitative result image analysis
[test on any users, informal usability study]
validate: lab study, measure human time/errors for operation
validate: test on target users, collect anecdotal evidence of utility
validate: field study, document human usage of deployed system
validate: observe adoption rates


Single paper would include only subset

- can't do all for same project
 - not enough space in paper or time to do work

threat: wrong problem
validate: observe and interview target users
threat: bad data/operation abstraction
threat: ineffective encoding/interaction technique
validate: justify encoding/interaction design
threat: slow algorithm
validate: analyze computational complexity
implement system
validate: measure system time/memory
validate: qualitative/quantitative result image analysis
[test on any users, informal usability study]
validate: lab study, measure human time/errors for operation
validate: test on target users, collect anecdotal evidence of utility
validate: field study, document human usage of deployed system
validate: observe adoption rates

Single paper would include only subset

pick validation method according to contribution claims

Real design process

- iterative refinement
 - levels don't need to be done in strict order
 - intellectual value of level separation
 - exposition, analysis
- shortcut across inner levels + implementation
 - rapid prototyping, etc.
 - low-fidelity stand-ins so downstream validation can happen sooner

Related work

- influenced by many previous pipelines
 - but none were tied to validation
 - [Card, Mackinlay, Shneiderman 99], ...
- many previous papers on how to evaluate
 - but not when to use what validation methods
 - [Carpendale 08], [Plaisant 04], [Tory and Möller 04]
 - exceptions
 - good first step, but no formal framework [Kosara, Healey, Interrante, Laidlaw, Ware 03]
 - guidance for long term case studies, but not other contexts [Shneiderman and Plaisant 06]
 - only three levels, does not include algorithm [Ellis and Dix 06], [Andrews 08]

Recommendations: authors

- explicitly state level of contribution claim(s)
- explicitly state assumptions for levels upstream of paper focus
 - just one sentence + citation may suffice
- goal: literature with clearer interlock between papers
 - better unify problem-driven and technique-driven work

Recommendation: publication venues

- we need more problem characterization
 - ethnography, requirements analysis
- as part of paper, and as full paper
 - now full papers relegated to CHI/CSCW
 - does not allow focus on central vis concerns
 - legitimize ethnographic "orange-box" papers!

Lab study as core now deemed legitimate

MatrixExplorer. Henry and Fekete. InfoVis 2006.

observe and interview target users

justify encoding/interaction design

measure system time/memory

qualitative result image analysis

LiveRAC. McLachlan, Munzner, Koutsofios, and North. CHI 2008.

observe and interview target users

justify encoding/interaction design

qualitative result image analysis

field study, document deployed usage

An energy model for visual graph clustering. (LinLog) Noack. Graph Drawing 2003

qualitative/quantitative image analysis

Effectiveness of animation in trend visualization. Robertson et al. InfoVis 2008.

lab study, measure time/errors for operation

Interactive visualization of genealogical graphs. McGuffin and Balakrishnan. InfoVis 2005.

justify encoding/interaction design

qualitative result image analysis test on target users, get utility anecdotes

Flow map layout. Phan et al. InfoVis 2005.

justify encoding/interaction design

computational complexity analysis measure system time/memory

qualitative result image analysis

Limitations

- oversimplification
- not all forms of user studies addressed
- infovis-oriented worldview
- are these levels the right division?

Conclusion

- new model unifying design and validation
 - guidance on when to use what validation method
 - broad scope of validation, including algorithms
- recommendations
 - be explicit about levels addressed and state upstream assumptions so papers interlock more
 - we need more problem characterization work

these slides posted at http://www.cs.ubc.ca/~tmm/talks.html#iv09