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Dimensionality Reduction

* mapping multidimensional space into
space of fewer dimensions
— typically 2D for infovis
— keep/explain as much variance as possible
— show underlying dataset structure

» multidimensional scaling (MDS)

— minimize differences between interpoint
distances in high and low dimensions




Dimensionality Reduction Example

* Isomap: 4096 D to 2D [Tenenbaum 00]

Wrist rotation

[A Global Geometric Framework for Nonlinear Dimensionality Reduction. Tenenbaum, de Silva and Langford.
Science 290 (5500): 2319-2323, 22 December 2000, isomap.stanford.edu]
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Previous Work

« MDS: iterative spring model (infovis)
— [Chalmers 96, Morrison 02, Morrison 03]
— [Amenta 02]

* eigensolving (machine learning)
— Isomap [Tenenbaum 00], LLE [Roweis 00]
— charting [Brand 02]
— Laplacian Eigenmaps [Belkin 03]
* many other approaches
— self-organizing maps [Kohonen 95]
— PCA, factor analysis, projection pursuit




Naive Spring Model

 repeat for all points

— compute spring force to all other points
« difference between high dim, low dim distance

— move to better location using computed forces

« compute distances between all points
— O(n?) iteration, O(n3) algorithm




Faster Spring Model [Chalmers 96]

« compare distances only with a few points
— maintain small local neighborhood set




Faster Spring Model [Chalmers 96]

« compare distances only with a few points
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— each time pick some randoms, swap in if closer
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Faster Spring Model [Chalmers 96]

« compare distances only with a few points
— maintain small local neighborhood set
— each time pick some randoms, swap in if closer

» small constant: 6 locals, 3 randoms typical
— O(n) iteration, O(n?) algorithm
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Parent Finding [Morrison 2002, 2003]}

* |lay out a root(n) subset with [Chalmers 96]

« for all remaining points
— find “parent”: laid-out point closest in high D
— place point close to this parent

« O(n°4) algorithm




Scalability Limitations

 high cardinality and high dimensionality: still slow
— motivating dataset: 120K points, 300 dimensions
— most existing software could not handle at all
— 2 hours to compute with O(n%4) HIVE [Ross 03]

 real-world need: exploring huge datasets
— last year’s questioner wanted tools for millions of points

 strategy
— start interactive exploration immediately
 progressive layout

— concentrate computational resources in interesting areas
« steerability

— often partial layout is adequate for task
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MDSteer Overview

lay out subdivide bins lay out another

random subset random subset

user selects active more subdivisions user refines
region of interest and layouts active region




Video 1




Algorithm Outline

lay out Initial subset of points
loop {
lay out some points in active bins
- precise placement of some

subdivide bins, rebin all points
- coarse placement of all
- gradually refined to smaller regions




Bins

* Screen-space regions
— placed points: precise lowD placement with MDS
— unplaced points: rough partition using highD distances




Bins

iIncremental computation
— unplaced points partitioned
— cheap estimate of final position, refine over time

Interaction
— user activates screen-space regions of interest

steerability

— only run MDS on placed points in active bins
— only seed new points from active bins
partition work into equal units

— roughly constant number of points per bin

— as more points added, bins subdivided




Rebinning

find min and max representative points
— alternate between horizontal and vertical

split bin halfway between them
rebin placed points: lowD distance from reps

rebin unplaced points: highD distance from reps




Recursive Subdivision

» start with single top bin
— contains initial root(n) set of placed points

 subdivide when each new subset placed




Irreqular Structure

— split based on screen-space point locations
—only split if point count above threshold
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Steerability

 user selects screen-space bins of interest

 screen space defines “interesting”
— explore patterns as they form in lowD space

— points can move between bins in MDS placement
« MDS iterations stop when points move to inactive bins

Computation Focus




Steerability

« approximate partitioning
— point destined for bin A may be in bin B’s unplaced set
— will not be placed unless B is activated

allocation of computation time
— user-directed: MDS placement in activated areas
— general: rebinning of all points to refine partitions

— rebinning cost grows with
« dimensionality
« cardinality

traditional behavior possible, just select all bins




Algorithm Loop Detalls

until all points in selected bins are placed {
add sampleSize points from selected bins
until stress stops shrinking {
for all points in selected bins {

run [Chalmers96] iteration
calculate stress } }

divide all bins in half

rebin all points }
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Video 2




Comparison

Standard MDS MDSteer

-l points p|aced e user-chosen subset of pOintS

- hours to compute for big placed

data (100K points, 300 dim) * Progressive, steerable
 immediate visual feedback




Results: Speed

 unsurprisingly, faster since fewer points placed
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Results: Stress

« difference between high dimensional
Yicildij— pij)? distance and layout distances

Stress = i _
Li<jPi; — one measure of layout quality

* d;— high dim distance between i and |

* p; — layout distance between i and |
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Results: Stress For Placed Points

 placed << total during interactive session
« passes sanity check: acceptable quality

3 dimensional data 300 dimensional data
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Contributions

* first steerable MDS algorithm
— progressive layout allows immediate exploration
— allocate computational resources in lowD space




Future Work

fully progressive
— gradual binning
— automatic expansion of active area

dynamic/streaming data

steerabllity
— find best way to steer
— steerable eigensolvers?

manifold finding
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