15 Views of a Node–Link Graph: An InfoVis Portfolio

Tamara Munzner

University of British Columbia
Department of Computer Science

Information Esthetics Lecture Series One
14 July 2005
15 Views of a Node–Link Graph: An InfoVis Portfolio
	node–link graph
 · common abstraction: nodes connected by edges
 · trees are special case: hierarchy with no cycles

infovis: information visualization
 · visual representation of abstract data
 computer–based: interactivity possible
 · help human perform some task more effectively
Information Esthetics

manifesto

- information content can enhance esthetic experience and esthetic consideration can enhance information content

successful infovis as example

- design guidelines for visual encoding as interplay of perception, cognition, esthetics, and data/task characterization
Visual Channels

visual attribute of geometric mark
 · position, color, size, shape, orientation, ...

separable vs. integral

| color position | color motion | color shape | size orientation | x-size | y-size | red-green | yellow-blue |

[Ware. Information Visualization: Perception for Design. Morgan Kaufmann 1999.]
Outline

Introduction

15 Views

• Traditional Graphs
• Nontraditional Representations
• Focus+Context Trees

Wrapup
1: Edge List

data: semantic network from Hofstadter book Godel, Escher, Bach
- nodes: topics
- links: discussion of ideas together in book

Turing – Halting problem
Halting problem – Infinity
Infinity – Paradoxes
Paradoxes – Lewis Carroll
Infinity – Lewis Carroll
Infinity – Unpredictably long searches
Infinity – Recursion
Infinity – Zeno
Infinity – Paradoxes
Lewis Carroll – Zeno
Lewis Carroll – Wordplay
Halting problem – Decision procedures
BlooP and FlooP – AI

Halting problem – Unpredictably long searches
BlooP and FlooP – Unpredictably long searches
BlooP and FlooP – Recursion
Tarski – Truth vs. provability
Tarski – Epimenides
Tarski – Undecidability
Paradoxes – Self-ref
Epimenides – Tarski
Epimenides – Paradoxes
Epimenides – Self-ref
[...]
Critique

strengths

· easy to create

weaknesses

· requires too much memory and cognition

· does not exploit human perceptual system
Visual External Representation

read off answers from node-link graph drawing

- connections drawn between nodes
- offload cognition to visual system

Diagram:

- Infinity
 - Zeno
 - Lewis Carroll
 - Wordplay
 - Epimenides
 - Self-ref
 - Truth vs. provability
 - Tarski
 - Undecidability
 - Paradoxes
 - Halting problem
 - Decision procedures
 - Turing
 - Unpredictably long searches
 - Recursion
 - BlooP and FlooP
 - AI
2: Hand-Drawn

data: GEB semantic network

strengths
 · high information density
 ratio of marks to whitespace
 foreground vs. background layer
 · subtleties of spatial layout

weaknesses
 · hours or days to create

3: Dot

data: semantic network

automatically compute positions for nodes, edges

strengths
 · fast: one second to create
 · careful routing of curved edges

weaknesses
 · low information density
 can't read labels

Graph Layout Criteria

minimize
 · crossings, area, bends/curves
Graph Layout Criteria

minimize
 - crossings, area, bends/curves

maximize
 - angular resolution, symmetry
Graph Layout Criteria

minimize
 · crossings, area, bends/curves

maximize
 · angular resolution, symmetry

most criteria individually NP-hard
 · cannot just compute optimal answer
 · heuristics: try to find something reasonable
Graph Layout Criteria

minimize
 · crossings, area, bends/curves

maximize
 · angular resolution, symmetry

most criteria individually NP-hard
 · cannot just compute optimal answer
 · heuristics: try to find something reasonable

criteria mutually incompatible

4: Force-Directed Placement
	nodes: repel like magnets
	edges: attract like springs

- start from random positions, run to convergence

encoding: geometric for graph proximity
Critique

strengths
 · intuitive model
 · many mathematical approaches

weaknesses
 · does not scale to large datasets
5: TopoLayout

multilevel decomposition and layout
 · automatic detection of topological features
 · chop into hierarchy of manageable pieces
 · lay out using feature–appropriate algorithms

[work in progress: Daniel Archambault, Tamara Munzner, and David Auber]
Multilevel Hierarchies

data: web sites, network backbones

- strengths: handles large class of graphs
- weaknesses: poor if no detectable features

[work in progress: Daniel Archambault, Tamara Munzner, and David Auber]
6: Animated Radial Layouts

dynamic graphs that change over time
 - minimize visual changes
 - stay true to current dataset structure
 [video: www.sims.berkeley.edu/~ping/gv]

Animation

polar interpolation

maintain neighbor order

Critique

strengths
 · smoother transitions

weaknesses
 · not scalable to large datasets
7: Constellation

data: semantic network from dictionary entry
 · nodes: English words, links: used together in entry
information density
 · design tradeoff with visual salience

[graphics.stanford.edu/papers/munzner_thesis/html/node11.html#noncanonfig]
Traditional Layout

avoid crossings
• considered "aesthetic criterion"
reason: avoid false attachments

ambiguity
artifact salience

[graphics.stanford.edu/papers/munzner_thesis/html/node10.html#tradlayoutfig]
Selective Emphasis

highlight sets of boxes and edges
 · additional perceptual channels based on interaction
avoid perception of false attachments
 · avoid hidden state
 · [video: graphics.stanford.edu/videos/const]
Critique

strengths
 · highly specialized
 · good information density in final version
 · perceptual layering successful

weaknesses
 · highly specialized
 · custom system design is expensive
Outline

Introduction

15 Views

· Traditional Graphs

· Nontraditional Representations

· Focus+Context Trees

Wrapup
8: Treemaps

Data: filesystems, stock performance

Show structure with containment not connection

- size according to node attribute

Critique

strength: popout for extreme attributes

weaknesses: difficulties seeing structure

[www.smartmoney.com/marketmap]

9: Cushion Treemaps

data: filesystems
show structure with shading
 · scale parameter controls global vs. local

Critique

strengths
· shows more topological structure than plain treemaps
· keeps power to show attribute outliers
· allows color to be used to encode other info

weaknesses
· still considerably worse than node-link representation for showing topological structure
10: Themescapes

data: news stories, gene expression
- from graph to terrain

<table>
<thead>
<tr>
<th>Gene Names</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element 1</td>
<td></td>
</tr>
<tr>
<td>Element 2</td>
<td></td>
</tr>
<tr>
<td>Element 3</td>
<td></td>
</tr>
<tr>
<td>Element 4</td>
<td></td>
</tr>
<tr>
<td>Element 5</td>
<td></td>
</tr>
<tr>
<td>Element 6</td>
<td></td>
</tr>
</tbody>
</table>

Davidson et al. Cluster Stability and the Use of Noise in Interpretation of Clustering. InfoVis 01

Critique

strengths
 · terrain model intuitive for people
 · good for overview

weaknesses
 · possibly misleading implication of continuous data
typically made from discrete samples
11: Multilevel Call Matrices

data: large software project

link matrix vs. node-link network matrix

force-directed

layered subset (dot)

- position: box shows link between nodes in row/column
- color: calls not in specification in red

Abstraction Levels

matrices: uniform, recursive, stable

Critique

strengths: tasks successfully supported

- spotting unwanted calls in implementation but not specification

- previous summary shown to be incomplete

weaknesses

- matrix views poor for some tasks

Outline

Visual Encoding

15 Views

- Traditional Graphs
- Nontraditional Representations
- Focus+Context Trees

Wrapup
Focus+Context

combine overview, details into integrated view

· vs. single detail view

· vs. multiple linked windows
12: SpaceTree

data: org charts, species relationships
interaction: expand/contract
 · [demo: www.cs.umd.edu/hcil/spacetree]

strengths
 · animated transitions easy to follow
weakness
 · cannot have multiple areas of focus

13: 2D Hyperbolic Trees

data: org charts, web sites
 · node: document
 · link: hyperlink between pages
carefully chosen distortion
 · fisheye effect: single focus from hyperbolic geometry
 · [demo: ucjeps.berkeley.edu/map2.html]

Critique

strengths

- scales to over 10,000 nodes

weaknesses

- distortion poor for distance judgement tasks
- still possible to get lost in large graphs
14: H3

data: web sites, species relationships
3D fisheye from hyperbolic geometry
・ [demo: graphics.stanford.edu/~munzner/h3]

Critique

strengths

• scales to over 100,000 nodes

weaknesses

• distortion poor for distance judgement tasks
• still possible to get lost in large graphs
15: TreeJuxtaposser

data: species evolutionary relationships

task: side by side comparison

accordion drawing
 · guaranteed visibility of landmarks
 · stretch and squish navigation
 · [demo: olduvai.sf.net/tj]

Guaranteed Visibility

drawing colored marks
 · easy with small datasets
 · hard with big datasets

reasons a mark could be invisible
 · outside the window
 · underneath other marks
 · smaller than a pixel

benefits of GV
 · minimizes amount of navigation required
 · guides necessary navigation choices
 · provides visible landmarks
Critique

strengths

- scalability to millions of nodes
- guaranteed frame rate
- guaranteed visibility
- supports multiple focus areas

weaknesses

- stretch and squish navigation inappropriate for tasks requiring distance estimation
- computationally intensive

Outline

Introduction

15 Views

- Traditional Graphs
- Nontraditional Representations
- Focus+Context Trees

Wrapup
Hard Problems

designing within huge space of possibilities

scalability
 · size of dataset
 · number of pixels
 · kinds of data

dynamic data

characterizing Focus+Context
 · how and when does it help
Grand Challenge

"visual Google for nontextual data"

not search for images

web search made available text data useable
 · for general and surprising uses beyond original intent

infovis browsing
 · could make available nontext data useful/visible
More Information

this talk
 · www.cs.ubc.ca/~tmm/talks.html#ie05

my grad course
 · www.cs.ubc.ca/~tmm/courses/infovis

conferences

 · InfoVis symposia: www.infovis.org/symposia.php
 IEEE Symposium on Information Visualization

 · Graph Drawing conferences: www.gd2005.org