15 Views of a Node-Link Graph: **An InfoVis Portfolio**

Tamara Munzner

University of British Columbia **Department of Computer Science**

Information Esthetics Lecture Series One 14 July 2005

Information Esthetics

manifesto

· information content can enhance esthetic experience and esthetic consideration can enhance information

successful infovis as example

design guidelines for visual encoding as interplay of perception, cognition, esthetics, and data/task characterization

15 Views of a Node-Link Graph: **An InfoVis Portfolio**

node-link graph

- common abstraction: nodes connected by edges
- · trees are special case: hierarchy with no cycles

infovis: information visualization

- visual representation of abstract data
- computer-based: interactivity possible
- help human perform some task more effectively

Visual Channels

visual attribute of geometric mark

position, color, size, shape, orientation, ...

separable vs. integral

color color color x-size red-green size position motion shape orientation y-size yellow-blue

[Ware. Information Visualization: Perception for Design. Morgan Kaufmann 1999.]

Outline

Introduction

15 Views

- Traditional Graphs
- · Nontraditional Representations
- · Focus+Context Trees

Wrapup

1: Edge List

data: semantic network from Hofstadter book Godel, Escher, Bach

- nodes: topics
- · links: discussion of ideas together in book

Turing - Halting problem Halting problem - Unpredictably long Halting problem - Infinity Infinity - Paradoxes searches BlooP and FlooP - Unpredictably long Paradoxes – Lewis Carroll Infinity – Lewis Carroll Infinity – Unpredictably long searches Infinity – Recursion searches BlooP and FlooP - Recursion Tarski - Truth vs. provability Tarski - Epimenides Infinity – Recursion
Infinity – Zeno
Infinity – Paradoxes
Infinity – Paradoxes
Lewis Carroll – Zeno
Lewis Carroll – Wordplay
Halting problem – Decision procedures
BlooP and FlooP – Al

Infinity – Recursion
Tarski – Epimenides – Self-ref
Epimenides – Tarski
Epimenides – Paradoxe
Epimenides – Self-ref
[...] Tarski - Undecidability Epimenides - Paradoxes

Critique

strengths

· easy to create

weaknesses

- · requires too much memory and cognition
- · does not exploit human perceptual system

Visual External Representation

read off answers from node-link graph drawing

- · connections drawn between nodes
- · offload cognition to visual system

2: Hand-Drawn

data: GEB semantic network

strengths

high information density ratio of marks to whitespace foreground vs. background layer

subtleties of spatial layout

weaknesses

hours or days to create

[Hofstadter. Godel, Escher, Bach: an Eternal Golden Braid. Basic Books 1979]

3: Dot

data: semantic network

automatically compute positions for nodes, edges

strengths

fast: one second to create careful routing of curved edges

weaknesses

low information density can't read labels

[Gansner, Koutsofois, North and Vo. A Technique for Drawing Directed Graphs. IEEE Trans. Software Engineering, 19(3):21₁₀229]

Graph Layout Criteria

minimize

· crossings, area, bends/curves

Graph Layout Criteria

minimize

· crossings, area, bends/curves

maximize

· angular resolution, symmetry

Graph Layout Criteria

minimize

· crossings, area, bends/curves

maximize

· angular resolution, symmetry

most criteria individually NP-hard

- · cannot just compute optimal answer
- heuristics: try to find something reasonable

13

Graph Layout Criteria

minimize

· crossings, area, bends/curves

maximize

· angular resolution, symmetry

most criteria individually NP-hard

- cannot just compute optimal answer
- heuristics: try to find something reasonable

criteria mutually incompatible

[Ware, Purchase, Colpys, and McGill. Cognitive Measures of Graph Aesthetics. Information Visualization 1(2):103-110, Palgrave 2002] [Brandenburg. Nice Drawings of Graphs are Computationally Hard. Visualization in Human-Computer Interaction, Springer Verlag 1988]

4: Force-Directed Placement

nodes: repel like magnets edges: attract like springs

start from random positions, run to convergence encoding: geometric for graph proximity

[www.csse.monash.edu.au/~berndm/CSE460/Lectures/cse460-7.pdf]

Critique

strengths

- · intuitive model
- · many mathematical approaches

weaknesses

does not scale to large datasets

16

5: TopoLayout

multilevel decomposition and layout

- automatic detection of topological features
- chop into hierarchy of manageable pieces
 lay out using feature-appropriate algorithms

Multilevel Hierarchies

data: web sites, network backbones

- strengths: handles large class of graphs
- weaknesses: poor if no detectable features

[work in progress: Daniel Archambault, Tamara Munzner, and David Auber]

6: Animated Radial Layouts

dynamic graphs that change over time

- · minimize visual changes
- stay true to current dataset structure [video: www.sims.berkeley.edu/~ping/gv]

[Yee, Fisher, Dhamija, and Hearst. Animated Exploration of Graphs with Radial Layol Proc. InfoVis 2001. bailando.sims.berkeley.edu/papers/infovis01.htm]

Animation

polar interpolation

maintain neighbor order

[Yee, Fisher, Dhamija, and Hearst. Animated Exploration of Graphs with Radial Layod? Proc. InfoVis 2001. bailando.sims.berkeley.edu/papers/infovis01.htm]

Critique

strengths

· smoother transtions

weaknesses

· not scalable to large datasets

7: Constellation

data: semantic network from dictionary entry · nodes: English words, links: used together in entry information density

· design tradeoff with visual salience

[Munzner, Guimbretiere and Robertson. Constellation: A Visualization Tool For Linguizzic Queries from MindNet. Proc. InfoVis 1999. graphics.stanford.edu/papers/const]

Traditional Layout

avoid crossings

considered "aesthetic criterion" reason: avoid false attachments

21

 $ambiguity \qquad artifact \ salience \\ [graphics.stanford.edu/papers/munzner_thesis/html/node10.html#tradlayoutfig]^3$

Selective Emphasis

highlight sets of boxes and edges

- additional perceptual channels based on interaction avoid perception of false attachments
 - · avoid hidden state
 - · [video: graphics.stanford.edu/videos/const]

[graphics.stanford.edu/papers/munzner_thesis/html/node10.html#selemphfig]24

Critique

strengths

- · highly specialized
- good information density in final version
- perceptual layering successful

weaknesses

- · highly specialized
- · custom system design is expensive

Outline

Introduction

15 Views

- · Traditional Graphs
- Nontraditional Representations
- · Focus+Context Trees

Wrapup

25

8: Treemaps

data: filesystems, stock performance

show structure with containment not connection

· size according to node attribute

[Johnson and Shneiderman. Treemaps: A Space-Filling Approach to the Visualization of Hierarchical Information Structures. Proc. IEEE Visualization 1991.]

Critique

strength: popout for extreme attributes

ohnson and Shneiderman. Treemaps: A Space-Filling Approach to the Visualization of Hierarchical Information Structures. Proc. IEEE Visualization

weaknesses: difficulties seeing structure

[van Wijk and van de Wetering. Cushion Treemaps. Proc. InfoVis 1999]

2

9: Cushion Treemaps

data: filesystems

show structure with shading

· scale parameter controls global vs. local

[van Wijk and van de Wetering. Cushion Treemaps. Proc. InfoVis 1999]

Critique

strengths

- \cdot shows more topological structure than plain
- treemaps
- · keeps power to show attribute outliers
- · allows color to be used to encode other info

weaknesses

 still considerably worse than node-link representation for showing topological structure

10: Themescapes

data: news stories, gene expression

from graph to terrain

Davidson et al. Cluster Stability and the Use of Noise in Interpretation of Clustering. InfoVis 01

[Wise et al. Visualizing the non-visual: spatial analysis and interaction with information ${}_{31}^{\rm from}$ text documents. Proc. InfoVis 1995. www.pnl.gov/infoviz/graphics.html]

Critique

strengths

- · terrain model intuitive for people
- · good for overview

weaknesses

· possibly misleading implication of continuous data typically made from discrete samples

32

11: Multilevel Call Matrices

data: large software project

link matrix vs. node-link network

- · position: box shows link between nodes in row/column
- · color: calls not in specification in red

[van Ham. Using Multilevel Call Matrices in Large Software Projects. Proc. InfoVis 2003]

Abstraction Levels

matrices: uniform, recursive, stable

[van Ham. Using Multilevel Call Matrices in Large Software Projects. Proc. InfoVis 2003]

3

Critique

strengths: tasks successfully supported

- \cdot spotting unwanted calls in implementation but not specification
- · previous summary shown to be incomplete

weaknesses

 \cdot matrix views poor for some tasks

[Ghoniem, Fekete, and Castagliola. A Comparison of the Readability of Graphs Using Node-Link and Matrix-Based Representations. Proc. InfoVis 2004]

35

Outline

Visual Encoding

15 Views

- · Traditional Graphs
- · Nontraditional Representations
- Focus+Context Trees

Wrapup

Focus+Context

combine overview, details into integrated view

- · vs. single detail view
- · vs. multiple linked windows

37

12: SpaceTree

data: org charts, species relationships interaction: expand/contract

[demo: www.cs.umd.edu/hcil/spacetree]

strengths

· animated transitions easy to follow weakness

· cannot have multiple areas of focus

[Plaisant, Grosjean, and Bederson. SpaceTree: Supporting Exploration in Large Node Link Tree, Design Evolution and Empirical Evaluation. Proc. InfoVis 2002]

13: 2D Hyperbolic Trees

data: org charts, web sites

- · node: document
- · link: hyperlink between pages carefully chosen distortion
 - · fisheye effect: single focus from hyperbolic geometry
 - · [demo: ucjeps.berkeley.edu/map2.html]

[The Hyperbolic Browser: A Focus + Context Technique for Visualizing Large Hierarchies. Lamping and Rao, Proc SIGCHI '95. http://citeseer.nj.nec.com/lamping95focuscontext.hgal]

Critique

strengths

· scales to over 10,000 nodes

weaknesses

- · distortion poor for distance judgement tasks
- still possible to get lost in large graphs

40

14: H3

data: web sites, species relationships
3D fisheye from hyperbolic geometry

· [demo: graphics.stanford.edu/~munzner/h3]

[Munzner. H3: Laying Out Large Directed Graphs in 3D Hyperbolic Space. Proc. InfoVis 1997. graphics.stanford.edu/papers/h3/]

Critique

strengths

· scales to over 100,000 nodes

weaknesses

- \cdot distortion poor for distance judgement tasks
- still possible to get lost in large graphs

15: TreeJuxtaposer

data: species evolutionary relationships task: side by side comparison

accordion drawing

- · guaranteed visibility of landmarks
- · stretch and squish navigation
- [demo: olduvai.sf.net/tj]

[Munzner et al. TreeJuxtaposer: Scalable Tree Comparison using Focus+Context with Guaranteed Visibility. SIGGRAPH 2003. www.cs.ubc.ca/~tmm/papers/tj] 43

Guaranteed Visibility

drawing colored marks

- easy with small datasets
- hard with big datasets

reasons a mark could be invisible

- outside the window
- · underneath other marks
- · smaller than a pixel

benefits of GV

- minimizes amount of navigation required
- · guides necessary navigation choices
- · provides visible landmarks

44

Critique

strengths

- · scalability to millions of nodes guaranteed frame rate
- guaranteed visibility
- · supports multiple focus areas

weaknesses

- \cdot stretch and squish navigation inappropriate for tasks requiring distance estimation
- · computationally intensive

[Slack, Hildebrand, and Munzner. PRISAD: A Partitioned Rendering Infrastructure for Scalable Accordion Drawing. Proc. InfoVis 2005, to appear]

45

Outline

Introduction

15 Views

- · Traditional Graphs
- · Nontraditional Representations
- · Focus+Context Trees

Wrapup

41

Hard Problems

designing within huge space of possibilities

scalability

- · size of dataset
- · number of pixels
- kinds of data

dynamic data

characterizing Focus+Context

· how and when does it help

Grand Challenge

"visual Google for nontextual data"

not search for images

web search made available text data useable

 \cdot for general and surprising uses beyond original intent

infovis browsing

· could make available nontext data useful/visible

More Information

this talk

· www.cs.ubc.ca/~tmm/talks.html#ie05

my grad course

· www.cs.ubc.ca/~tmm/courses/infovis

conferences

- · InfoVis symposia: www.infovis.org/symposia.php IEEE Sympoxium on Information Visualization
- $\cdot \ Graph \ Drawing \ conferences: www.gd2005.org$