Problem-Driven Interactive Visualization for Imperfect Models

Tamar Munzner
Department of Computer Science
University of British Columbia

@tammamunzner

http://www.cs.ubc.ca/~tmm/talks.html#huawei22

Problem-Driven Interactive Visualization for Imperfect Models
Tamara Munzner
Department of Computer Science
University of British Columbia
Huawei Vancouver
Jan 19 2022, virtual
@tamaramunzner

Visualization (vis) defined & motivated

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- summaries lose information, people can see a lot in the details
- confirm expected and find unanticipated patterns
- issues with statistical models
- sensitivity analysis for parameters

Why is validation difficult?

- Unpacking data visually: From rollup to drilldown
- human in the loop needs details about data
- is the user looking at it?
- why is it shown?
- task abstraction
- data abstraction
- how is it shown?
- visual encoding idiom: how to draw
- interaction idiom: how to manipulate
- algorithm
- efficient computation

Nested model: Four levels of visualization concerns

- domain situation
 - who are the target users?

- abstraction
 - translate from specifics of domain to vocabulary of vis
 - what is shown?
 - data abstraction
 - data abstraction
 - often don't just draw what you're given; transform to new form

- task abstraction
 - why is the user looking at it?
 - task abstraction

- idiom
 - how is it shown?
 - visual encoding idiom: how to draw
 - interaction idiom: how to manipulate

Outline

- methodology of problem-driven visualization research
- two case studies of visualizing imperfect models
 - NLP for temporal data
 - ML with graph neural networks
- brief overview of other problem-driven projects

Why is validation difficult?

- different ways to get it wrong at each level

Unpacking data visually: From rollup to drilldown

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- summaries lose information, people can see a lot in the details
- confirm expected and find unanticipated patterns
- issues with statistical models
- sensitivity analysis for parameters

Why is validation difficult?

- different ways to get it wrong at each level

Updated: 2022-01-19

More at:

http://www.cs.ubc.ca/~tmm/talks.html#huawei22

A Nested Model for Visualization Design and Validation

A Nested Model for Visualization Design and Validation.

Datasets with Varied Appearance and Identical Statistics

Matejka & Fitzmaurice

Datasets with Varied Appearance and Identical Statistics

Matejka & Fitzmaurice

A Multi-Level Typology of Abstract Visualization Tasks

Brehmer and Munzner. IEEE TVCG

[A Multi-Level Typology of Abstract Visualization Tasks

Brehmer and Munzner. IEEE TVCG

Visual encoding/interaction idiom

Task abstraction

Abstraction

Domain situation

- who are the target users?

- idiom
 - how is it shown?
 - visual encoding idiom: how to draw
 - interaction idiom: how to manipulate

- algorithm
 - efficient computation

A Nested Model for Visualization Design and Validation

A Nested Model for Visualization Design and Validation.

Visual encoding/interaction idiom

Task abstraction

Abstraction

Domain situation

- who are the target users?

- idiom
 - how is it shown?
 - visual encoding idiom: how to draw
 - interaction idiom: how to manipulate

- algorithm
 - efficient computation

A Nested Model for Visualization Design and Validation

A Nested Model for Visualization Design and Validation.

Visual encoding/interaction idiom

Task abstraction

Abstraction

Domain situation

- who are the target users?
Why is validation difficult?
• different ways to get it wrong at each level

 Domain situation
 - You misunderstood their needs
 - Design: observed target users using existing tools
 - Data/task abstraction: target users using existing tools
 - Algorithm: target users after deployment (dark study)
 - Anthropology/ethnography: observed target users using existing tools

 Validation solution: use methods from appropriate fields at each level
 - Domain situation
 - Data/task abstraction
 - Algorithm
 - Anthropology/ethnography

 computer science
 - Algorithm: Resource management (monitoring)
 - Algorithm: Resource management (monitoring)
 - Algorithm: Resource management (monitoring)

 Why is validation difficult?
 - different ways to get it wrong at each level

 Domain situation
 - You misunderstood their needs
 - Design: observed target users using existing tools
 - Data/task abstraction: target users using existing tools
 - Algorithm: target users after deployment (dark study)
 - Anthropology/ethnography: observed target users using existing tools

 Validation solution: use methods from appropriate fields at each level
 - Domain situation
 - Data/task abstraction
 - Algorithm
 - Anthropology/ethnography

 computer science
 - Algorithm: Resource management (monitoring)
 - Algorithm: Resource management (monitoring)
 - Algorithm: Resource management (monitoring)

Visualization: Angles of attack

Validation solution: use methods from appropriate fields at each level

 computer science
 - Algorithm: Resource management (monitoring)
 - Algorithm: Resource management (monitoring)
 - Algorithm: Resource management (monitoring)

Why is validation difficult?
• different ways to get it wrong at each level

 Domain situation
 - You misunderstood their needs
 - Design: observed target users using existing tools
 - Data/task abstraction: target users using existing tools
 - Algorithm: target users after deployment (dark study)
 - Anthropology/ethnography: observed target users using existing tools

 Validation solution: use methods from appropriate fields at each level
 - Domain situation
 - Data/task abstraction
 - Algorithm
 - Anthropology/ethnography

 computer science
 - Algorithm: Resource management (monitoring)
 - Algorithm: Resource management (monitoring)
 - Algorithm: Resource management (monitoring)

Why is validation difficult?
• different ways to get it wrong at each level

 Domain situation
 - You misunderstood their needs
 - Design: observed target users using existing tools
 - Data/task abstraction: target users using existing tools
 - Algorithm: target users after deployment (dark study)
 - Anthropology/ethnography: observed target users using existing tools

 Validation solution: use methods from appropriate fields at each level
 - Domain situation
 - Data/task abstraction
 - Algorithm
 - Anthropology/ethnography

 computer science
 - Algorithm: Resource management (monitoring)
 - Algorithm: Resource management (monitoring)
 - Algorithm: Resource management (monitoring)
“A design study is a project in which visualization researchers analyze a specific real-world problem faced by domain experts...”
Design studies & user-centered design

- user-centered design: well-known HCI methodology
 - iterative refinement & deployment
 - evaluation through case studies & field studies

what's specific to visualization?
- discovering task and data abstractions
- designing visual encoding & interaction idioms that map to abstractions

Two case studies of visualizing imperfect models

- NLP for temporal data
- ML for graph data

ML for graph data
- link prediction
- node classification
- examples: product recommendation, protein interactions

NLP for temporal data
- cool use case: eureka moment
 - success: enable what was impossible before
 - vis tools for new insights & discoveries
 - workhorse use case: workflow speedup
 - sometimes enables the previously infeasible

The importance of being brisk
- two other use cases nudge towards exploration
- comparison between multiple timelines
- speculative browsing

Graph neural network (GNN)
- machine learning (ML) models for graphs
 - like CNN for images
 - like Transformer for text
- many real-world graph-related applications
 - node classification
 - example: fraud detection, disease classification
 - link prediction
 - example: product recommendation, protein interactions
Problem-driven visualization for imperfect models

- problem-driven methodology
 - translate domain problems into abstractions
 - before visual encoding idioms & algorithms
 - avoid collaboration pitfalls
 - understand roles, ensure aligned incentives

- interactive visualization supporting human-in-the-loop judgments about models
 - two cases: different data types

- overview: other problem-driven projects

More information

- this talk
 http://www.cs.ubc.ca/~tmm/talks.html#huawei22
- papers, videos, software, talks, courses
 http://www.cs.ubc.ca/~tmm
- theoretical foundations: book
 [+ tutorial/course lecture slides]