Interactive Information Visualization
Tamara Munzner
University of British Columbia
Department of Computer Science
7 October 2004

Outline
- information visualization motivation
- designing for humans
- information visualization techniques
- future directions

Information visualization
- interactive visual representation of abstract data
 - help human perform some task more effectively

Interactivity
- static images
 - 10,000 years
 - art, graphic design
- moving images
 - 100 years
 - cinematography
- interactive graphics
 - 20 years
 - computer graphics, human-computer interaction

Information visualization
- interactive visual representation of abstract data
 - help human perform some task more effectively
- external representation
 - reduces load on working memory
- bridging many fields
 - graphics: interacting in realtime
 - cognitive psych: finding appropriate representation
 - HCI: using task to guide design and evaluation

Task-oriented design
- custom design for checking semantic networks
 - reading definition subgraph labels
Task-oriented design

previous general methods

Design tradeoffs

information density vs. visual salience

Scientific vs. information visualization

scivis: inherently spatial data
 - fluid flow over airplane wing
infovis: abstract data, choice of spatialization
 - FilmFinder

Example: node-link graphs

powerful abstraction
 - common in many domains

Why visualize graphs?

Example: book topic relationships
 - [Godel, Escher, Bach. Hofstadter 1979]

Why visualize graphs?

offload cognition to visual systems
minimal attention to read answer
Why draw graphs automatically?
manually: hours, days automatically: seconds

Human perception
sensors/transducers
- psychophysics: determine characteristics
relative judgements: strong
absolute judgements: weak
different optimizations than most machines
- eyes are not cameras
- perceptual dimensions not nD array
- brains are not hard disks

Preattentive visual dimensions
color (hue) alone: preattentive
- attentional system not invoked
- search speed independent of distractor count

Preattentive visual dimensions
many preattentive dimensions of visual modality
- hue
- shape
- texture
- length
- width
- size
- orientation
- curvature
- intersection
- intensity
- flicker
- direction of motion
- stereoscopic depth
- lighting direction

Preattentive visual dimensions
color alone: preattentive
shape alone: preattentive
combined hue and shape: multimodal
- requires attention
- search speed linear with distractor count
Dimensional ranking

Data types
- continuous (quantitative): 10 inches, 17 inches, 23 inches
- ordered (ordinal): small, medium, large
- categorical (nominal): apples, oranges, bananas

Dimensional ranking varies by data type
spatial position best for all types

Nonlinear perception of magnitudes
sensory dimensions not equally discriminable
- Stevens power law

Integral vs. separable dimensions
- red-green, x-size, size, color, motion, location

Dimensional dynamic range
linewidth: limited discriminability

[Blackler, Automating the Design of Graphical Presentations of Relational Information, ACM TOG 5.2, 1986]
[Colin Ware, Information Visualization: Perception for Design. Morgan Kaufmann, 1999]
Foveal Vision
thumb at arm’s length
small high resolution area on retina

Equal Legibility
if fixated on center point

Eyes
saccades
- fovea: high-resolution samples
- brain makes collage
- vision perceived as entire simultaneous field
- fixation points: dwell 200–600ms
- moving: 20–100ms

Outline
information visualization motivation
designing for humans
information visualization techniques
future directions

Coloring Categorical Data
22 colors, but only 8 distinguishable

Coloring Categorical Data
discrete small patches separated in space
limited distinguishability: around 8–14
- channel dynamic range: low
- maximally discriminable colors from Ware
- maximal saturation for small areas

choose bins explicitly for maximum mileage
Minimal Saturation for Large Areas

- avoid saturated color in large areas
 - "excessively exuberant"

![Map of the United States with color gradients](image)

[Edward Tufte, Envisioning Information, p.82]

Coloring Ordered Data

- innate visual order
 - greyscale/luminance
 - saturation
 - brightness
- unclear visual order
 - hue

Coloring Quantitative Data

- continuous field
 - side by side patches highly distinguishable
 - channel dynamic range: high
 - mediocre
 - hue (rainbow)
 - good
 - greyscale/luminance
 - saturation
 - brightness

Rainbow Colormap Advantages

- low-frequency segmentation
 - "the red part", "the orange part", "the green part"

Rainbow Colormap Disadvantages

- segmentation artifacts
 - popular interpolation perceptually nonlinear
 - solution
 - create perceptually isolinear map

Non-Rainbow Colormap Advantages

- High-frequency continuity
 - Interpolating between just two hues

Segmenting Colormaps

- Explicit rather than implicit segmentation

Color Deficiency

- Very low channel dynamic range for some!
 - Protanope: has red/green deficit (10% of males)
 - Deutanope: has yellow/blue deficit
 - Tritanope: has chromatic deficient

http://www.vischeck.com/vischeck
 - Test your images

Color Deficiency Examples: vischeck

- Original
- Protanope
- Deutanope
- Tritanope

Designing Around Deficiencies

- Red/green could have domain meaning then distinguish by more than hue alone
 - Redundantly encode with saturation, brightness

Overview + detail

- Problem:
 - Avoid user disorientation when inspecting detail
 - Hard for big datasets

Bad: one window, must remember position

- Global overview
- Local detail
Overview and detail
better: add linked overview window(s)

how to create overview?

Overview and detail
SeeSoft: software maintenance
(colormaps: segmented vs. continuous)
code age
platform dependencies

Overview+detail
Rivet: performance tuning
level of detail

Overview to detail to sorting

Focus+context
linked windows
still have cognitive load to correlate
good solution:
merge overview, detail into single window
fisheye views [Furnas 86], [Sarkar et al 94]

Focus+context
linked windows
still have cognitive load to correlate
good solution:
merge overview, detail into single window
fisheye views [Furnas 86], [Sarkar et al 94]
nonlinear magnification [Keahey 96]
Focus + context
H3 [Munzner 97]
- task: browsing large quasi-hierarchical graphs
 - [demo]

Global focus + context
Treejuxtaposer: comparing trees
- linked highlighting
 - [demo]

Space vs. Time: Showing Change

- **literal**
 - time for time

- **abstract**
 - space for time

animation: show time using temporal change
- good: show process
- bad: compare by flipping between two things

www.graphvue.cs.washington.edu

Space vs. Time: Showing Change

- **literal**
 - time for time

- **abstract**
 - space for time

animation: show time using temporal change
- good: show process
- good: compare by flipping between two things
- bad: compare between many things
- interference from intermediate frames

www.graphvue.cs.washington.edu
Space vs. Time: Showing Change

- literal
- abstract

| time for time | space for time |

small multiples: show time using space
- overview: show each time step in array
- compare: side-by-side easier than temporal
- external cognition instead of internal memory
- general technique, not just for temporal changes

Minimizing occlusion

- bad: Midwestern occlusion

Minimizing occlusion

- good: show only start and end of lines

Minimizing occlusion: 3D vs. 2D

- bad: 3D pretty but not useful
 - metacognitive gap: lose by adding dimension

Minimizing occlusion: 3D vs. 2D

- good: 2D display of category clusters

Motion: clarify structure

- navigation
 - rotate/translate/zoom

- object recognition
 - moving lights at joints
 - Johansson 1973

- animated transitions
 - avoid change blindness
 - jump increases cognitive load
 - smooth transition from one state to next
 - maintain object constancy
Outline
- information visualization motivation
- designing for humans
- information visualization techniques
- future directions

Future: scaling to huge datasets
- data explosion
 - sensors
 - Human Genome Project
 - Sloan Digital Sky Survey
 - simulation
 - Accelerated Strategic Computing Initiative
 - microprocessor design
 - logging
 - long-distance telephony backbone
 - Web traffic

Future: dynamic data
- static
 - hyperlink structure of entire Web
- dynamic
 - entire Web changing through time (Internet Archive)
- open problem: incremental/online layout
 - minimal visual changes: maintain user's mental model
 - faithfully represent current state

Future: scaling display resolution
- always pixel-bound in past
- high-res displays now available
 - 4K x 2K: 9M pixels vs 1 Mpixel
 - pixel rich
- interactivity + resolution of paper
 - add physical navigation (walk closer) to virtual navigation

Project domains
- current
 - bioinformatics
 - data mining
 - environmental sustainability
- past
 - topology
 - networking
 - computational linguistics
 - web site design

More Information
- Term 1 course: 533C Visualization
- email me to schedule time to talk: tmmi@cs.ubc.ca
- FSC 2618
 - Term 1 office hours: 3:45-4:45 Wed
- http://www.cs.ubc.ca/~tmm