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Visualization Big Picture



Mapping

I input
I data semantics
I use domain knowledge

I output
I visual encoding

I visual/graphical/perceptual/retinal
I channels/attributes/dimensions/variables

I use human perception
I processing

I algorithms
I handle computational constraints



Bertin: Semiology of Graphics
I geometric primitives: marks

I points, lines, areas, volumes
I attributes: visual/retinal variables

I parameters control mark appearance
I separable channels flowing from retina to brain

I x,y
I position

I z
I size
I greyscale
I color
I texture
I orientation
I shape

[Bertin, Semiology of Graphics, 1967 Gauthier-Villars, 1998 EHESS]



Design Space = Visual Metaphors

[Bertin, Semiology of Graphics, 1967 Gauthier-Villars, 1998 EHESS]



Data Types

I continuous (quantitative)
I 10 inches, 17 inches, 23

inches

I ordered (ordinal)
I small, medium, large
I days: Sun, Mon, Tue, ...

I categorical (nominal)
I apples, oranges, bananas

[graphics.stanford.edu/papers/polaris]
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Channel Ranking Varies by Data Type
I spatial position best for all types
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[Mackinlay, Automating the Design of Graphical Presentations of Relational
Information, ACM TOG 5:2, 1986]



Mackinlay, Card
I data variables

I 1D, 2D, 3D, 4D, 5D, etc
I data types

I nominal, ordered, quantitative
I marks

I point, line, area, surface, volume
I geometric primitives

I visual channels
I size, brightness, color, texture, orientation,

shape...
I parameters that control the appearance of

geometric primitives
I separable channels of information flowing from

retina to brain

I closest thing to central dogma we’ve got



Shneiderman’s Data+Tasks
Taxonomy

I data
I 1D, 2D, 3D, temporal, nD, trees, networks
I text and documents (Hanrahan)

I tasks
I overview, zoom, filter, details-on-demand,
I relate, history, extract

I data alone not enough
I what do you need to do?

I mantra: overview first, zoom and filter,
details on demand

[Shneiderman, The Eyes Have It: A Task by Data Type Taxonomy for
Information Visualizations]



Tasks, Amar/Eagan/Stasko Taxonomy

I low-level tasks
I retrieve value, filter, compute derived value,
I find extremum, sort, determine range,
I characterize distribution, find anomalies,
I cluster, correlate

I standardized set for better comparison
between papers

I abstraction from domain problem to operations

[Amar, Eagan, and John Stasko. Low-Level Components of Analytic
Activity in Information Visualization. Proc. InfoVis 05]



Control Room Example
Which location has the highest power surge for the given time period?
(extreme y-dimension)

A fault occurred at the beginning of this recording, and resulted in a
temporary power surge. Which location is affected the earliest?
(extreme xdimension)

Which location has the most number of power surges?
(extreme count)

[Overview Use in Multiple Visual Information Resolution Interfaces. Lam, Munzner, and
Kincaid. Proc. InfoVis 2007]



Data Models vs. Conceptual Models

I data model: mathematical abstraction
I set with operations
I e.g. integers or floats with ∗,+

I conceptual model: mental construction
I includes semantics, support data
I e.g. navigating through city using landmarks

[Hanrahan, graphics.stanford.edu/courses/
cs448b-04-winter/lectures/encoding/walk005.html]
[Rethinking Visualization: A High-Level Taxonomy. Melanie Tory and
Torsten Möller, Proc. InfoVis 2004, pp. 151-158.]



Models Example
I from data model

I 17, 25, -4, 28.6
I (floats)

I using conceptual model
I (temperature)

I to data type
I continuous to 4 sig figures (Q)
I hot, warm, cold (O)
I burned vs. not burned (N)

I using task
I finding anamolies in local weather patterns
I classifying showers
I making toast
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Time
I 2D+T vs. 3D

I same or different? depends on POV
I time as input data?
I time as visual encoding?

I same
I time just one kind of abstract input dimension

I different
I input semantics
I visual encoding: spatial position vs. temporal

change
I processing might be different

I e.g. interpolate differently across timesteps
than across spatial position



Combinatorics of Encodings

I challenge
I pick the best encoding from exponential

number of possibilities (n + 1)k

I for n input dimensions, k visual channels

I Principle of Consistency
I properties of the image should match

properties of data
I Principle of Importance Ordering

I encode most important information in most
effective way

[Hanrahan, graphics.stanford.edu/courses/cs448b-04-winter/lectures/encoding]



Automatic Design

I select visualization automatically given data

I Mackinlay/APT: limited set of data,
encodings

I scatterplots, bar charts, etc

I holy grail
I entire parameter space



Mackinlay’s Criteria

I Expressiveness
I Set of facts expressible in visual language if

sentences (visualizations) in language express
all facts in data, and only facts in data.

I consider the failure cases...

[Hanrahan, graphics.stanford.edu/courses/cs448b-04-winter/lectures/encoding]



Cannot Express the Facts

I A 1⇔ N relation cannot be expressed in a
single horizontal dot plot because multiple
tuples are mapped to the same position

[Hanrahan, graphics.stanford.edu/courses/cs448b-04-winter/lectures/encoding]



Expresses Facts Not in the Data
I Length interpreted as quantitative value

I Thus length says something untrue about
nominal data

[Mackinlay, APT]
[Hanrahan,graphics.stanford.edu/courses/cs448b-04-winter/lectures/encoding]



Mackinlay’s Criteria

I Expressiveness
I Set of facts expressible in visual language if

sentences (visualizations) in language express
all facts in data, and only facts in data.

I Effectiveness
I A visualization is more effective than another

visualization if information conveyed by one
visualization is more readily perceived than
information in other.

I subject of the next lecture

[Hanrahan,graphics.stanford.edu/courses/cs448b-04-winter/lectures/encoding]



Summary

I formal approach to picture specification
I declare the picture you want to see
I compile query, analysis, and rendering

commands needed to make the pictures
I automatically generate presentations by

searching over the space of designs
I Bertin’s vision still not complete

I formalize data model
I formalize the specifications
I experimentally test perceptual assumptions

I much more research to be done...
[Hanrahan,graphics.stanford.edu/courses/cs448b-04-winter/lectures/encoding]



Credits

I Pat Hanrahan
I graphics.stanford.edu/courses/cs448b-04-

winter/lectures/encoding

I Torsten Möller, Melanie Tory
I discussions
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