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Graph Drawing Through the Lens of a Framework for Analyzing 
Visualization Methods

Why?...
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Graph Drawing Through the Lens of a Framework for Analyzing 
Visualization Methods

• think systematically about space of possibilities
–methods: design space of techniques

• find gaps in previous work
–develop new techniques, algorithms

• characterize existing/new work
–match up algorithms and techniques to real-world problems
–facilitate broader adoption by establishing suitability

Why analyze vis methods? 

Why?...
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Graph Drawing Through the Lens of a Framework for Analyzing 
Visualization Methods

• vis draws on GD community’s work
–especially algorithms, systems

• GD motivated by vis
–great connection to application domains

• network data: special case of general principles

Why connect graph drawing and visualization?

Outline

• Levels of visualization design
• Abstraction for data
• Principles of marks and channels
• Using space
• Further analysis examples
• Conclusions
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Levels of visualization design
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Separating vis design into four levels
• connecting all the way from real-world problems of 

target users to algorithms

–covered elsewhere: validation
[A Nested Model for  Visualization Design and Validation. Munzner. IEEE Trans. 
Visualization and Computer Graphics (Proc. InfoVis 09), 15(6):921-928, 2009.]

domain problem 

data/task abstraction

encoding/interaction technique

algorithm
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Emphasis: Technique level
• just above familiar algorithm level, connects directly
• plus a bit of background on abstraction

domain problem 

data/task abstraction

encoding/interaction technique

algorithm

[A Nested Model for  Visualization Design and Validation. Munzner. IEEE Trans. 
Visualization and Computer Graphics (Proc. InfoVis 09), 15(6):921-928, 2009.]
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Goal: More upwards characterization 
• map from algorithms up to techniques they support

domain problem 

data/task abstraction

encoding/interaction technique

algorithm

[A Nested Model for  Visualization Design and Validation. Munzner. IEEE Trans. 
Visualization and Computer Graphics (Proc. InfoVis 09), 15(6):921-928, 2009.]

Characterize how?

• focus here on one major issue

–how is space used?

• explicit consideration in visualization
–trickier to see from purely graph drawing perspective

• common cases not trivial to analyze!
– node-link diagrams, compound graphs
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Covered elsewhere: Downwards from real users
• design study methodology paper 

–problem-driven work: building for specific people to use

domain problem 

data/task abstraction

encoding/interaction technique

algorithm

[Design Study Methodology: Reflections from the Trenches and the Stacks. 
Sedlmair, Meyer, and Munzner. IEEE Trans. Visualization and Computer Graphics 
(Proc. InfoVis 2012), 18(12):2431-2440, 2012.]

Abstraction for data
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Abstraction: data types
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domain problem
    data/task abstraction
         encoding/interaction technique 
              algorithm

Abstraction: data types
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domain problem
    data/task abstraction
         encoding/interaction technique 
              algorithm

–covered elsewhere: task abstraction
[A Multi-Level Typology of Abstract Visualization Tasks. Brehmer and Munzner. IEEE 
Trans. Visualization and Computer Graphics (Proc. InfoVis), to appear 2013.]

Deriving new data: Common case

• example: Strahler number for graphs
–centrality metric: node importance

• new per-node quantitative attrib
• result of global calculation

• visualization uses
–fast interactive rendering: draw nodes in 

order of importance
–draw small subset: structure far more 

understandable than w/ random sampling
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–more detail in Auber02
[Using Strahler numbers for real time visual exploration of huge 
graphs. Auber. Intl. Conf. Computer Vision and Graphics, 2002, p. 
56-69.]

Principles of marks and channels
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domain problem
    data/task abstraction
         encoding/interaction technique 
              algorithm

• how to analyze?
–start with easy cases from statistical graphics

Techniques: Visual encoding
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Marks and channels
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Techniques: Visual encoding analysis principles

18

Techniques: Visual encoding analysis principles
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Techniques: Visual encoding analysis principles
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Techniques: Visual encoding analysis principles
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Techniques: Visual encoding analysis principles
Marks as links
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• we implicitly perceive 
some properties as 
indicating relationships 
between items
–containment
–connection

–also, proximity
•  use of space

Channel types
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• channels also have implicit perceptual types
–match them with attribute types

• avoid losing information or implying incorrect properties

–how much: ordered
• example: spatial position along a common scale
• example: length of line mark

–what: categorical
• example: spatial region

• spatial channels have strongest perceptual impact
–reason for focus on use of space here

• many other channels: color, size, orientation, ...
–we know types and ranking in terms of impact (roughly)
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Channel rankings

• covered elsewhere: 
[Visualization Principles
http://www.cs.ubc.ca/~tmm/
talks.html#vizbi11]

• focus here: implications 
of these rankings!

Using space
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Using space: Channel choices
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Using space: Channel choices
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• could just use data as given
–cartography
–volume graphics
–flow visualization

Using space: Channel choices
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• could just use data as given
–cartography
–volume graphics
–flow visualization

• focus: choosing use of space
–central issue in graph layout

Using space: Channel choices
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Using space: Channel choices
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• values expressed spatially
–encode quantitative attribute 

using spatial position of mark
• example: scatterplots



Using space: Channel choices
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• values expressed spatially
–encode quantitative attribute 

using spatial position of mark
• example: scatterplots

• regions of space
–separate into regions

• proximity implies grouping

–order regions
• could be data-driven

–align for more precise judgements
• can subdivide recursively

Using space: Examples
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• multiple bar charts
–data: table, 3 attribs

• 1 quant, 2 categ

–marks: line
–spatial channels

• within each region
– express value w/ vert spatial pos 
– align vert
– order by quant attrib

• one choice: separate views
– separate into 2 regions by categ attrib

• another choice: interleaved view
– separate into 4 regions, 1 per item
– draw both attribs within region

Using space: Examples

26[http://upload.wikimedia.org/wikipedia/commons/4/48/Heatmap.png]

• heatmap
–data: same!

• 1 quant, 2 categ

–marks: area
• (color by quant attrib)

–spatial channels
• separate and align in 2D matrix

– indexed by 2 categ attribs

• order: many choices
– matrix reordering algs

Using space: Examples
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• matrix graph view
–data, channels: same!

–derived data: table from network
• 1 quant attrib

– weighted edge between nodes 

• 2 categ attribs: node list x 2

–spatial channels: 
• cell shows presence/absence of edge

i
i

i
i

i
i

i
i

7.1. Using Space 135

Figure 7.5: Comparing matrix and node-link views of a five-node network.
a) Matrix view. b) Node-link view. From [Henry et al. 07], Figure 3b and
3a. (Permission needed.)

the number of available pixels per cell; typically only a few levels would
be distinguishable between the largest and the smallest cell size. Network
matrix views can also show weighted networks, where each link has an as-
sociated quantitative value attribute, by encoding with an ordered channel
such as color luminance or size.

For undirected networks where links are symmetric, only half of the
matrix needs to be shown, above or below the diagonal, because a link
from node A to node B necessarily implies a link from B to A. For directed
networks, the full square matrix has meaning, because links can be asym-
metric. Figure 7.5 shows a simple example of an undirected network, with
a matrix view of the five-node dataset in Figure 7.5a and a corresponding
node-link view in Figure 7.5b.

Matrix views of networks can achieve very high information density, up
to a limit of one thousand nodes and one million edges, just like cluster
heatmaps and all other matrix views that uses small area marks.

Technique network matrix view
Data Types network
Derived Data table: network nodes as keys, link status between two

nodes as values
View Comp. space: area marks in 2D matrix alignment
Scalability nodes: 1K

edges: 1M

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.1.3.3 Multiple Keys: Partition and Subdivide When a dataset has only
one key, then it is straightforward to use that key to separate into one region

[NodeTrix: a Hybrid Visualization of Social Networks. Henry, Fekete, and 
McGuffin. IEEE TVCG (Proc. InfoVis) 13(6):1302-1309, 2007.]

Using space: Links
• marks as links (vs. nodes)

–common case in graph drawing
–1D case: connection

• ex: all node-link diagrams
• emphasizes topology, path tracing

–2D case: containment
• ex: all treemap variants
• emphasizes attribute values at 
leaves (size coding)
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Node–Link Diagram Treemap Elastic Hierarchy 

Node-Link Containment 

[Elastic Hierarchies: Combining Treemaps and Node-Link Diagrams. Dong, McGuffin, and 
Chignell. Proc. InfoVis 2005, p. 57-64.]

Using space: Layout orientation
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Using space: Layout orientation

• spatial layout
–orientation of spatial axes
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Using space: Layout orientation

• spatial layout
–orientation of spatial axes

• limitations studied
–rectilinear: scalability wrt #axes

• 2 axes best
• 3 problematic

– see Visualization Principles talk

• 4+ impossible

–radial: perceptual limits
• angles lower precision than lengths 

29

[Uncovering Strengths and Weaknesses of 
Radial Visualizations - an Empirical Approach. 
Diehl, Beck and Burch. IEEE TVCG (Proc. 
InfoVis) 16(6):935--942, 2010.]

Analysis examples: Tree drawing

• data shown
– link relationships 
– tree depth
– sibling order

• methods
– connection vs containment 

link marks
– rectilinear vs radial layout
– spatial position channels

• considerations
– redundant? arbitrary?
– information density?

• avoid wasting space
30

[Quantifying the Space-Efficiency of 2D Graphical 
Representations of Trees. McGuffin and Robert. 
Information Visualization 9:2 (2010), 115–140.]

Analysis example: force-directed placement

• visual encoding
–link connection marks
–node point marks

• considerations
–spatial position: no meaning 

directly encoded
• left free to minimize crossings

–proximity semantics?
• sometimes meaningful
• sometimes arbitrary, artifact of layout 
algorithm

• tension with length
– long edges more visually salient than short
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 [http://mbostock.github.com/d3/ex/force.html]

Analysis example: multi-level FDP (sfdp)

• data
–original: network
–derived: cluster hierarchy atop it

• visual encoding
–same: link connection marks

• considerations
–better algorithm for same 

encoding technique
• same: fundamental use of space
• hierarchy used in algorithm but 
not shown explicitly

32

[Efficient and high quality force-directed 
graph drawing. Hu. The Mathematica 
Journal 10:37–71, 2005.]

Analysis example: GrouseFlocks

33

• data: compound graphs
–network
–cluster hierarchy atop it

• derived or interactively chosen

• visual encoding
–connection marks for network links
–containment marks for hierarchy
–point marks for nodes

• dynamic interaction
–select individual metanodes in hierarchy 

to expand/contract
[GrouseFlocks: Steerable 
Exploration of Graph Hierarchy 
Space. Archambault, Munzner, 
and Auber. IEEE TVCG 14(4):
900-913, 2008.]

i
i

i
i

i
i

i
i

166 7. Making Views

(a) Original Graph

Graph Hierarchy 1 Graph Hierarchy 2 Graph Hierarchy 3

(b) Graph Hierarchies

Figure 7.25: GrouseFlocks uses containment to show graph hierarchy struc-
ture. (a) Original graph. (b) Several alternative hierarchies built from the
same graph. The hierarchy alone is shown in the top row. The bottom row
combines the graph encoded with connection with a visual representation
of the hierarchy using containment. From [Archambault et al. 08], Figure
3.

Multiple views vs single views

• powerful method: use multiple views side by side
–vs. superimposing multiple views as layers atop each other

• all must have shared spatial layout

–vs. single view that changes over time
• as with interactive navigation

• principle: eyes beat memory
–easy to compare by moving eyes between side-by-side views

• harder to compare visible item to memory of what you saw

–external cognition vs. internal working memory limits 34

Further analysis examples
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Analysis example: Cerebral

• data
–network

• nodes: genes, links: known interaction
• per-node attribs

– location within cell where interaction occurs
– biological function

–table
• 1quant attrib: gene expression level
• indexed by 2 categ attribs: node/gene, experimental condition

36

[Cerebral: Visualizing Multiple Experimental Conditions on a Graph with Biological 
Context. Barsky, Munzner, Gardy, and Kincaid. IEEE TVCG (Proc. InfoVis) 14(6):
1253-1260, 2008.]

[Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using 
subcellular localization annotation. Barsky, Gardy, Hancock, and Munzner. Bioinformatics 
23(8):1040-1042, 2007.]

Use of space: Cerebral

• side by side views
–small multiples

• same encoding, 
different data

–separate into regions
• each shows entire 
network

• color nodes by quant 
attrib for condition

37

[Cerebral: Visualizing Multiple Experimental 
Conditions on a Graph with Biological Context. 
Barsky, Munzner, Gardy, and Kincaid. IEEE TVCG 
(Proc. InfoVis) 14(6):1253-1260, 2008.]



Use of space: Cerebral 

• superimposed layers 
within each view
–dynamic interaction 

technique

• highlight 1-hop 
neighbors on mouseover
–foreground layer 

distinguished by color
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Cerebral: a Cytoscape plugin for layout of 
and interaction with biological networks 
using subcellular localization annotation. 
Barsky, Gardy, Hancock, and Munzner. 
Bioinformatics 23(8):1040-1042, 2007.]

Use of space: Cerebral

• network visual encoding
–consideration

• mimic stylized spatial 
semantics of hand-drawn 
diagrams 

–marks: connection for links
–spatial channels 

• separate into regions 
according to subcellular 
location attrib

• order regions vert by attrib
• in bottom region: also 
separate into subregions by 
function attrib

39

Cerebral: a Cytoscape plugin for layout of 
and interaction with biological networks 
using subcellular localization annotation. 
Barsky, Gardy, Hancock, and Munzner. 
Bioinformatics 23(8):1040-1042, 2007.]

Considerations: Cerebral

• explicit discussion of choices for use of space
–design motivated by analysis of previous work
–justified as more suitable than characterized alternatives

• changing single view with animation: avoided
– cognitive load
– hard to track changes across many conditions and many nodes

• separating into one region per gene: avoided
– information density
– not enough space to show multiple attribs within node for big networks
– enough space to show multiple networks with single mark per node

» separating into one region per condition: chosen

–spatial position: partially constrained
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Analysis example: Constellation
• data

– multi-level network
• node: word
• link: words used in same 

dictionary definition

• subgraph for each definition
– not just hierarchical clustering

– paths through network
• query for high-weight paths 

between 2 nodes
– quant attrib: plausibility

41

[Interactive Visualization of Large Graphs and 
Networks. Munzner. Ph.D. Dissertation, Stanford 
University, June 2000.]

[Constellation: A Visualization Tool For Linguistic 
Queries from MindNet. Munzner, Guimbretière 
and Robertson. Proc. IEEE Symp. InfoVis1999, 
p.132-135.]

Using space: Constellation
• visual encoding

– link connection marks 
between words

– link containment marks to 
indicate subgraphs

– encode plausibility with horiz 
spatial position

– encode source/sink for query 
with vert spatial position

• spatial layout
– curvilinear grid: more room 

for longer low-plausibility 
paths

42[Interactive Visualization of Large Graphs and Networks. Munzner. Ph.D. Dissertation, Stanford University, June 2000.]

Using space: Constellation
• edge crossings

– cannot easily minimize instances, 
since position constrained by 
spatial encoding

– instead: minimize perceptual impact

• views: superimposed layers
– dynamic foreground/background 

layers on mouseover, using color
– four kinds of constellations

• definition, path, link type, word
– not just 1-hop neighbors

43

[Interactive Visualization of Large Graphs and Networks. 
Munzner. Ph.D. Dissertation, Stanford University, June 2000.]

Considerations: Constellation

• another example of design motivated by analysis
–explicit discussion of choices using space

• spatial position: highly constrained
• tradeoffs

– information density vs spatial encoding semantics
» covered elsewhere: iterative refinement of layout

[Interactive Visualization of Large Graphs and Networks. Munzner. Ph.D. Dissertation, Stanford 
University, June 2000.]

– crossings: instances vs salience
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Analysis example: Noack LinLog

• energy model designed to reveal 
clusters in data
–requires that edges between clusters 

longer than those within
• visual encoding technique

–using same minimization algorithms as 
previous work

• considerations
–also design motivated by prior analysis

• explicit discussion of technique-level 
issues in GD literature

– encourage more papers like this!

45

[An Energy Model for Visual 
Graph Clustering. Noack.  
Proc. Graph Drawing 2003, 
p. 425--436. 

Conclusions
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Vis methods analysis framework
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• characterize techniques in terms of methods for 
using space

• marks and channels
– marks for nodes vs marks for links

• space channel: express, separate, order, align
– position, proximity, partitioning into groups

• general way to analyze visualizations systematically
–applied to graph drawing examples in particular

Framework goals
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• guide development of new algorithms/techniques
–in same spirit as examples shown

• Cerebral, Constellation, LinLog Energy

• characterize existing algorithms/techniques
–can guide adoption

• in what context are they suitable?
– context here: previous design levels

Mapping upwards

• from algorithms to techniques
–sometimes trivial

• discussion in paper itself
• direct citation of previous work for framing context

–sometimes tricky indeed
• when algorithm description does not facilitate analysis of 
resulting visual encoding

– use for space, or other channels

• line between algorithm and technique can be blurry
– does new algorithm support existing technique, or new one?

» trivial when speed increase for identical visual results

• from techniques to abstractions to domain problems
–equally important questions, but beyond scope for today...

49

domain problem
    data/task abstraction
         encoding/interaction technique 
              algorithm

Framework goals
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• guide development of new algorithms/techniques
–in same spirit as examples shown

• Cerebral, Constellation, LinLog Energy

• characterize existing algorithms/techniques
–can guide adoption

• in what context are they suitable?
– context here: previous design levels

• vis methods analysis only one possible route!
–many others

• benchmarks, computational complexity, user studies...
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More information

• this talk
http://www.cs.ubc.ca/~tmm/talks.html#gd13

• more on analysis
–techniques/methods in more depth
–also, principles and abstractions!

• single chapter in 2009 Fundamentals of Graphics textbook
Visualization 
http://www.cs.ubc.ca/~tmm/papers.html#akpchapter 

• full vis textbook: to appear, 2014, AK Peters
–Visualization Analysis and Design: 
Principles,  Abstractions, and Methods


