Q1. Real Users or Fellow Tool Builders?
- FTB can be valuable collaborators
- but not a substitute for direct contact with real users
 - even if longstanding project
 - especially if new project
- different situation than user-centered design
 - in retrospect, failure to explicitly distinguish led to role confusion

Q2. Real Need?
- do users need a new tool/technique/approach?
 - are existing tools good enough to do the job?
 - even if not perfect from infovis research standpoint
 - some users do have infovis needs without knowing it
- is problem on the table best solved with infovis?
 - or other methods?
 - some users who ask for infovis, don’t have real need
- are users willing to try new tool?
 - success is hard enough with enthusiastic end users
 - not worth uphill struggle to deal with reluctant users

Q3. Real Task - Will Their Need Persist?
- do they do chosen task seldom or occasionally or always?
- will they keep doing it?
- example: Constellation project
 - by the time system done, their needs had shifted
 - careful design study, but could not say users had adopted
- outcome: InfoVis 99 paper

Q4. Real Data - Can I Have It?
- is data proprietary?
 - many reasons for data producer to not release it
 - expose intellectual property, embarrass organization
- example: data mining dashboard
 - never occurred to me to ask if real data available
 - because collaborator approached me
 - did not explicitly consider FTB vs. RI role
 - discovered DM cultural norm of synthetic data for benchmarks, only after many months into project
- conjecture: we're not seeing something useful because nothing to see in fake data, will change when get real data
 - continued with major effort to extend datamining server, 11 input variables, with 3 choices each
 - new project, just funded
 - research: TreeJuxtaposer, pick task that’s stable over centuries
 - outcome: SIGGRAPH 03 paper

Examples: Showing Information Spaces
- visualize hyperlink structure of web for browsing users
 - my entry into infovis (common story)
 - assertion of lost-in-hyperspace, without real use case
- later, H3 use case was for webmasters instead of browsers
 - outcome: InfoVis 99 paper
- semantic network vis
 - outcome: walk away very early, after initial discussion

Case Study: Sustainability Vis
- initial focus: high-dimensional dataset
 - 11 input variables, with 3 choices each
 - over 100,000 output scenarios, each measured in 300 dimensions
- showing linkages between inputs and outputs
 - helping people infer correlations between dimensions

Q4: Real Data - Can I Have It?
- example: data mining dashboard, cont.
 - reality: could not get real data
 - eventually scrounged quasi-real data
 - also, risky scalable technique still didn't show anything useful
 - realized approach didn’t match task 2 years into project
- outcome: tech report

Four Years Later... Confusion On All 4 Questions
1. distinguishing between FTB collaborators and real users? not crisp enough!
2. real need for my new approach/tool? maybe not!
 - FTB intuitions: simply radical, complexities cause unmanageable confusion
 - infovis intuitions: explore richness of underlying dataset
 - if FTB intuition was correct, then maybe infovis inappropriate
3. addressing a real task? shifting target?
4. does real data exist and can I get it? model troubles!
 - infovis tool could help show relationships in model
 - but FTB already knew correlations
 - and didn’t want users too fixated on exact model details

Discussion
- agree or disagree with these questions?
- other questions you think are worth asking?
- would you find a paper on this topic interesting or boring?
- how can we as a field could learn more from null results?
 - given the size of the parameter space of designs, not so interesting to report on poor technique choices
 - process questions, in addition to technique questions?
Writing Bad Papers
Writing Good Papers
medium: A Panorama of Publication Pitfalls
http://www.cs.ubc.ca/~tmm/talks.html#vis06publish
long: CPSC 533C Fall 06 Lecture 15: Writing Papers
http://www.cs.ubc.ca/~tmm/courses/infovis/#writing
Tamara Munzner
UBC Computer Science
May 2007

Overview
▶ What Not To Do
▶ What To Do

Paper Pitfalls: Strategy
▶ What I Did Over My Summer Vacation
 ▶ focus on effort not contribution
 ▶ too low-level
▶ Least Publishable Unit
 ▶ tiny increment beyond (your) previous work
 ▶ bonus points: new name for old technique
▶ Dense As Plutonium
 ▶ so much content that no room to explain why/what/how
 ▶ fails reproducability test
▶ Bad Slice and Dice
 ▶ two papers split up wrong
 ▶ neither is standalone, yet both repeat
▶ Slimy Simultaneous Submission
 ▶ often detected when same reviewer for both
 ▶ instant dual rejection, multi-conference blacklist

Paper Pitfalls: Tactics
▶ Guess My Contributions Game
 ▶ it's your job to tell reader explicitly
 ▶ consider carefully, often different from original goals
▶ I Am So Unique
 ▶ don't ignore previous work
 ▶ both on similar problems and with similar solutions
▶ Enumeration Without Justification
 ▶ "X did Y" not enough
 ▶ must say why previous work doesn't solve your problem!
 ▶ what limitations of theirs does your approach fix?
▶ Deadly Detail Dump
 ▶ how allowed only after what and why
 ▶ motivation: why should I care
 ▶ overview: what did you do
 ▶ details: how did you do it
▶ Jargon Attack
 ▶ avoid where you can
 ▶ define before using

InfoVis Paper Styles
▶ technique
 ▶ most common
 ▶ here's how to do X
 ▶ do first, or do better
▶ design study
 ▶ not just apply technique X to domain Y
 ▶ justify visual encoding choices
▶ system
 ▶ very hard to do well!
 ▶ lessons learned: why do we care?
▶ evaluation
 ▶ often but not always user studies
▶ model
 ▶ frameworks, taxonomies
 ▶ best case: taxonomy as aid to thinking, finding gaps
▶ actual paper may (should?) have a mix of these elements
▶ more at www.infovis.org/infovis/2003/CFP/#papers

Paper Writing: InfoVis Technique/Design Study
▶ what problem are you solving
 ▶ why should I care
 ▶ order depends on whether familiar
▶ why don't existing systems solve problem
▶ technique
 ▶ how algorithm works: overview, then details
 ▶ design study
 ▶ what is mapping from domain problem to visual encoding
 ▶ why does it solve problem
 ▶ abstraction and justification is critical
 ▶ may include multiple design iterations
▶ results
 ▶ complexity, performance, visual quality, efficacy
 ▶ informal usability, formal user study, field study
 ▶ anecdotes (insights found), user community (adoption),
 ▶ usage scenarios, case studies

Overview