Visualization: Abstractions & Idioms

Tamara Munzner
Department of Computer Science
University of British Columbia

University of Coimbra Guest Lecture
9 Mar 2022, virtual / Coimbra, Portugal

http://www.cs.ubc.ca/~tmn/talks.html#coimbra22
Visualization defined & motivated

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- suitable when human in the loop needs details
- interplay between human judgement and automatic computation

Anscombe’s Quartet

<table>
<thead>
<tr>
<th>Identical statistics</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x mean</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>x variance</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>y mean</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>y variance</td>
<td>3.75</td>
<td></td>
</tr>
<tr>
<td>x/y correlation</td>
<td>0.816</td>
<td></td>
</tr>
</tbody>
</table>

Datasaurus Dozen

Same Stats, Different Graphs: Generating Datasets with Varied Appearance and Identical Statistics through Simulated Annealing. CHI 2017. Matejka & Fitzmaurice
Why focus on tasks and effectiveness?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- effectiveness requires match between data/task and representation
 - set of representations is huge
 - many are ineffective mismatch for specific data/task combo
 - increases chance of finding good solutions if you understand full space of possibilities
Metaphor: Design space

+ good
○ okay
- poor
Metaphor: Design space

+ good
○ okay
- poor

some technique...
Metaphor: Design space

know
Metaphor: Design space

know

consider
Metaphor: Design space

know
consider
propose
select
Metaphor: Design space

Think broad!
Why focus on tasks and effectiveness?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

• effectiveness requires match between data/task and representation
 – set of representations is huge
 – many are ineffective mismatch for specific data/task combo
 – increases chance of finding good solutions if you understand full space of possibilities

• what counts as effective?
 – novel: enable entirely new kinds of analysis
 – faster: speed up existing workflows

• how to validate effectiveness
 – many methods, must pick appropriate one for your context
Nested model: Four levels of visualization concerns

Nested model: Four levels of visualization concerns

• *domain* situation
 – *who* are the target users?
Nested model: Four levels of visualization concerns

• *domain* situation
 – **who** are the target users?

• *abstraction*
 – translate from specifics of domain to vocabulary of vis
Nested model: Four levels of visualization concerns

- **domain** situation
 - who are the target users?

- **abstraction**
 - translate from specifics of domain to vocabulary of vis
 - what is shown? **data abstraction**

Nested model: Four levels of visualization concerns

• **domain** situation
 – **who** are the target users?

• **abstraction**
 – translate from specifics of domain to vocabulary of vis
 – **what** is shown? **data abstraction**
 • often don’t just draw what you’re given: transform to new form

[A Multi-Level Typology of Abstract Visualization Tasks

[A Nested Model of Visualization Design and Validation.
Nested model: Four levels of visualization concerns

• **domain** situation
 – **who** are the target users?

• **abstraction**
 – translate from specifics of domain to vocabulary of vis
 – **what** is shown? data abstraction
 • often don’t just draw what you’re given: transform to new form
 – **why** is the user looking at it? task abstraction

Nested model: Four levels of visualization concerns

- **domain situation**
 - **who** are the target users?

- **abstraction**
 - translate from specifics of domain to vocabulary of vis
 - **what** is shown? **data abstraction**
 - often don’t just draw what you’re given: transform to new form
 - **why** is the user looking at it? **task abstraction**

- **idiom**
 - **how** is it shown?
Nested model: Four levels of visualization concerns

• **domain** situation
 – **who** are the target users?

• **abstraction**
 – translate from specifics of domain to vocabulary of vis
 – **what** is shown? **data abstraction**
 • often don’t just draw what you’re given: transform to new form
 – **why** is the user looking at it? **task abstraction**

• **idiom**
 – **how** is it shown?
 • **visual encoding idiom**: how to draw

[A Multi-Level Typology of Abstract Visualization Tasks

[A Nested Model of Visualization Design and Validation.
Nested model: Four levels of visualization concerns

- **domain situation**
 - **who** are the target users?

- **abstraction**
 - translate from specifics of domain to vocabulary of vis
 - **what** is shown? **data abstraction**
 - often don’t just draw what you’re given: transform to new form
 - **why** is the user looking at it? **task abstraction**

- **idiom**
 - **how** is it shown?
 - **visual encoding idiom**: how to draw
 - **interaction idiom**: how to manipulate
Nested model: Four levels of visualization concerns

- **domain situation**
 - **who** are the target users?

- **abstraction**
 - translate from specifics of domain to vocabulary of vis
 - **what** is shown? **data abstraction**
 - often don’t just draw what you’re given: transform to new form
 - **why** is the user looking at it? **task abstraction**

- **idiom**
 - **how** is it shown?
 - **visual encoding idiom**: how to draw
 - **interaction idiom**: how to manipulate

- **algorithm**
 - efficient computation

Why is validation difficult?

• different ways to get it wrong at each level

Why is validation difficult?

- different ways to get it wrong at each level

Domain situation
You misunderstood their needs

Why is validation difficult?

• different ways to get it wrong at each level

[Domain situation]
You misunderstood their needs

[Data/task abstraction]
You're showing them the wrong thing

Why is validation difficult?

• different ways to get it wrong at each level

- **Domain situation**
 You misunderstood their needs

- **Data/task abstraction**
 You’re showing them the wrong thing

- **Visual encoding/interaction idiom**
 The way you show it doesn’t work

Why is validation difficult?

- different ways to get it wrong at each level

- Domain situation
 - You misunderstood their needs

- Data/task abstraction
 - You're showing them the wrong thing

- Visual encoding/interaction idiom
 - The way you show it doesn’t work

- Algorithm
 - Your code is too slow

Validation solution: use methods from appropriate fields at each level

Validation solution: use methods from appropriate fields at each level

computer science

Algorithm
Measure system time/memory
Analyze computational complexity

Validation solution: use methods from appropriate fields at each level

- Algorithm
 - Measure system time/memory
 - Analyze computational complexity

Validation solution: use methods from appropriate fields at each level

Visual encoding/interaction idiom
Justify design with respect to alternatives

Algorithm
Measure system time/memory
Analyze computational complexity

Analyse results qualitatively
Measure human time with lab experiment (lab study)

technique-driven work

design
computer science
cognitive psychology

Validation solution: use methods from appropriate fields at each level

- **Domain situation**
 - Observe target users using existing tools

- **Data/task abstraction**
 - **Visual encoding/interaction idiom**
 - Justify design with respect to alternatives
 - **Algorithm**
 - Measure system time/memory
 - Analyze computational complexity
 - Analyze results qualitatively
 - Measure human time with lab experiment (*lab study*)
 - Observe target users after deployment (*field study*)

- **Anthropology/ethnography**
 - Measure adoption

Validation solution: use methods from appropriate fields at each level

- **Domain situation**: Observe target users using existing tools
- **Data/task abstraction**
 - **Visual encoding/interaction idiom**: Justify design with respect to alternatives
 - **Algorithm**: Measure system time/memory, Analyze computational complexity
 - Analyze results qualitatively
 - Measure human time with lab experiment (*lab study*)
 - Observe target users after deployment (*field study*)
 - Measure adoption

Validation solution: use methods from appropriate fields at each level

- avoid mismatches between level and validation

<table>
<thead>
<tr>
<th>Domain situation</th>
<th>Data/task abstraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observe target users using existing tools</td>
<td>Visual encoding/interaction idiom</td>
</tr>
<tr>
<td>Justify design with respect to alternatives</td>
<td>Algorithm</td>
</tr>
<tr>
<td>Measure system time/memory</td>
<td>Measure human time with lab experiment (lab study)</td>
</tr>
<tr>
<td>Analyze computational complexity</td>
<td>Analyze results qualitatively</td>
</tr>
<tr>
<td></td>
<td>Observe target users after deployment (field study)</td>
</tr>
<tr>
<td></td>
<td>Measure adoption</td>
</tr>
</tbody>
</table>

Visualization: Angles of attack

problem-driven work
Visualization: Angles of attack

problem-driven work \(\rightarrow\) technique-driven work
Visualization: Angles of attack

problem-driven work

evaluation

technique-driven work
Visualization: Angles of attack

problem-driven work

technique-driven work

theoretical foundations

evaluation
Three case studies: Abstractions & idioms

• e-commerce

• facilities management

• biology
Three case studies: Abstractions & idioms

- e-commerce
- facilities management
- biology
Segmentifier

Interactive Refinement of Clickstream Data

Segmentifier: Interactive Refinement of Clickstream Data.
E-commerce: mobile apps for large companies
What are the **Data and Task Abstractions** for **Clickstream Data Analysis**?
What is *Clickstream Data*?
Data: *Actions*
Data: Action Attributes
Data: Action Types

E-commerce
- addToCart
- removeFromCart
- search
- purchase

Site Functionality
- appStart
- appDisplayError
- offlineModeUsed

Pageviews
- pageview
Action Hierarchy
Action Hierarchy
Data: Sequences
Data: Sequences
Data: Client Sequences

Client Sequences: all actions performed by a single user
Session Sequences: all actions performed by a single user within a defined amount of time (Δ) from each other. Δ is usually 30 min.
Data: Sequence Attributes

<table>
<thead>
<tr>
<th>Start time</th>
<th>End time</th>
<th>Duration</th>
<th>Action Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>: 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>: 1</td>
</tr>
</tbody>
</table>
Data: **Segments**

Segment: any set of sequences
Data: Segment Attributes

Counts of sequences:
Absolute, Relative

Sequence Distributions:
Start Time, Duration, Action Counts

Action Distributions:
Action Transitions:
action before, action after
Real-world Clickstream Data
Real-world Clickstream Data

Scale is huge
Real-world Clickstream Data

Scale is huge

Variability is high
Real-world Clickstream Data

Scale is huge

Variability is high

Most work **fails** when applied to real-world data
What are *Clickstream Data Analysis Tasks*?
Tasks: Segment Behavior

Behavior: set of attribute constraints

Segment

Viewed 4 pages
Purchased
Between 9 - 10 am

Start time
Tasks: Segment Behavior

Behavior: set of attribute constraints

- **Expected**
 Users add to cart before purchasing

- **Unexpected**
 No purchases on a certain month

- **Favorable**
 Purchased

- **Unfavorable**
 Bounced
Tasks: Task Abstraction

Identify: Find some set of sequences that constitutes interesting behavior.
Tasks: Task Abstraction

Identify: Find some set of sequences that constitutes interesting behavior.

Drilldown: Distinguish more specific behaviors to further partition a segment previously defined by looser constraints.
Tasks: Task Abstraction

Identify: Find some set of sequences that constitutes interesting behavior

Drilldown: Distinguish more specific behaviors to further partition a segment previously defined by looser constraints

Frequency: Determine how many sequences are in the segment defined by behavior
Tasks: Task Abstraction

<table>
<thead>
<tr>
<th>Segment</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Segment Image]</td>
</tr>
</tbody>
</table>

Identify: Find some set of sequences that constitutes interesting *behavior*.

Drilldown: Distinguish more specific *behaviors* to further partition a segment previously defined by looser constraints.

Frequency: Determine how many sequences are in the segment defined by *behavior*.

Ordering within sequence: Match if one action subsequence occurs before (or after) another action subsequence in a sequence.
High-Level Segmentifier Analysis Model
High-Level Segmentifier Analysis Model

- Abstraction above task/data level to provide design rationale
- Take a giant, noisy dataset and refine it into small, clean segments for
 - actionable insights
 - downstream analysis
- Bridge the gap between real-world data and other techniques
High-Level Segmentifier Analysis Model

- Gives Insight into underlying data of segment
 - Action Attributes
 - Sequence Attributes
 - Segment Attributes
- Leads to:
 - Insights
 - New ways on how to refine
 - Whether segment should be abandoned
 - Whether segment should be exported
High-Level Segmentifier Analysis Model

- Apply operation to create new segments
- Type of Refinements
 - Filter
 - Partition
 - Transform
High-Level Segmentifier Analysis Model

- Record all refinement steps automatically
- Keep track of questions asked and hypotheses tested
- Ability to create and view multiple segments from the same segment
High-Level Segmentifier Analysis Model

- Export refined segments for further downstream analysis, to more specific tools:
 - Pattern mining
 - Clustering
High-Level Segmentifier Analysis Model

- Discover actionable insight by viewing segment
By viewing the segment, analyst abandons if:
- No actionable insights
- No further ways to refine
- Not suitable for export
Why Visual Analytics?

- Automation would be nice...
 - Put data in, actionable results appear
- … but it is not realistic
 - Many possible questions, data-driven interplay between finding answers and generating new questions
- Human-in-the-loop visual data analysis
 - Integrate computing power of machine with intuition of domain experts
Solution
The Segmentifier Interface
Segmentifier: Interactively Refining Clickstream Data into Actionable Segments

https://www.youtube.com/watch?v=TobYDFeISOg
Segmentifier Contributions

➤ Thorough **characterization of task and data abstraction** for clickstream data analysis
Segmentifier Contributions

➢ Thorough **characterization of task and data abstraction** for clickstream data analysis

➢ **Segmentifier: novel analytics interface** for refining data segments and viewing characteristics before downstream fine-grained analysis
Segmentifier Contributions

➢ Thorough **characterization of task and data abstraction** for clickstream data analysis

➢ **Segmentifier: novel analytics interface** for refining data segments and viewing characteristics before downstream fine-grained analysis

➢ Preliminary **evidence of utility**
Three case studies of problem-driven work

• e-commerce

• facilities management

• biology
Ocupado

Visualizing Location-Based Counts Over Time Across Buildings

Ocupado: Visualizing Location-Based Counts Over Time Across Buildings.

Video

https://www.youtube.com/watch?v=KcwjVK8eUdw
Location-Based Counts

- Regular intervals (e.g., every 5 minutes)
- Spatial hierarchy (Zone → Floor → Building → Campus)
- No trajectories or device identifiers are recorded
- Intrinsic privacy advantages
Data

Automated HVAC control
Data
Data

Decision making
WiFi connections as a proxy for occupancy
WiFi connections as a proxy for occupancy
Interviews with potential stakeholders
Focus Domains

- Space planning
- Building management
- Custodial services
- Classroom management
- Data quality control
Focus Domains

- Space planning
- Building management
- Custodial services
- Classroom management
- Data quality control

Semi-structured discussions and live demos
Tasks

Confirm assumptions or previous observations.
Do students occupy room x in evenings or on weekends?
Tasks

- **Confirm** assumptions or previous observations.

- **Monitor** the current/recent utilization rate.

 Which rooms are empty/busy?
Tasks

- Confirm assumptions or previous observations.
- Monitor the current/recent utilization rate.
- Communicate space usage and justify decisions.

Space usage improved after renovation.
Tasks

- **Confirm** assumptions or previous observations.
- **Monitor** the current/recent utilization rate.
- **Communicate** space usage and justify decisions.
- **Validate** the data (quality control).
 Check minimum size of a room that can be captured.
Spatial and Temporal Data Granularities
Visualization Prototypes

Sandbox

Data sketches,
static data export

Time
Visualization Prototypes

- original plan: different interface for each stakeholder
- realization: task & data abstractions match multiple stakeholders
 - if slice by space & time granularity

Sandbox

Data sketches, static data export
Spatial and Temporal Data Granularities

Regions of interest

Zone

Floor

Building
Spatial and Temporal Data Granularities

Regions of interest

- Zone
- Floor
- Building

Periods of interest

- Mondays
- Weekdays
- last 12 hours
- Summer term
- Fr 8-10am
- Weekends
Visualization Prototypes

Sandbox
- Data sketches, static data export

Campus Explorer
- Live-data stream, cross-building analysis

Building Recent

Building Long-term

Region Compare

Time
Reusable Visualization Components
Reusable Visualization Components

<table>
<thead>
<tr>
<th>Layout</th>
<th>Visual Encoding</th>
<th>Facet</th>
<th>Comparisons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sparkline</td>
<td></td>
<td>Juxtaposition</td>
<td>Repeating patterns, trends, outliers (contiguous)</td>
</tr>
</tbody>
</table>

How?
- Encode
- Manipulate
- Facet
- Reduce
- Arrange
- Map
- Change
- Select
- Navigate
- Express
- Separate
- Order
- Align
- Use
- Juxtapose
- Partition
- Superimpose

Why?

What?
Reusable Visualization Components

<table>
<thead>
<tr>
<th>Layout</th>
<th>Visual Encoding</th>
<th>Facet</th>
<th>Comparisons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sparkline</td>
<td>Juxtaposition</td>
<td>Repeating patterns, trends, outliers (contiguous)</td>
</tr>
<tr>
<td></td>
<td>Box-plot-bars</td>
<td>Juxtaposition</td>
<td>Repeating patterns, trends, outliers (non-contiguous)</td>
</tr>
</tbody>
</table>

How?
- Encode
- Manipulate
- Facet
- Reduce
- Arrange
- Map
- Change
- Select
- Navigate
- Express
- Separate
- Order
- Align
- Use
- Juxtapose
- Partition
- Superimpose
- Filter
- Aggregate
- Embed

Why?
- What?
Reusable Visualization Components

<table>
<thead>
<tr>
<th>Layout</th>
<th>Visual Encoding</th>
<th>Facet</th>
<th>Comparisons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sparkline</td>
<td>Juxtaposition</td>
<td>Repeating patterns, trends, outliers (contiguous)</td>
</tr>
<tr>
<td></td>
<td>Box-plot-bars</td>
<td>Juxtaposition</td>
<td>Repeating patterns, trends, outliers (non-contiguous)</td>
</tr>
<tr>
<td></td>
<td>Confidence band</td>
<td>Aggregation</td>
<td>Typical utilization profiles</td>
</tr>
</tbody>
</table>

How?
- Encode
- Manipulate
- Facet
- Reduce
- Arrange
- Map
- Change
- Select
- Navigate
- Express
- Separate
- Order
- Align
- Use
- Juxtapose
- Partition
- Superimpose
- Filter
- Aggregate
- Embed

Why?
- How?
- What?
Reusable Visualization Components

<table>
<thead>
<tr>
<th>Layout</th>
<th>Visual Encoding</th>
<th>Facet</th>
<th>Comparisons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sparkline</td>
<td>Juxtaposition</td>
<td>Repeating patterns, trends, outliers (contiguous)</td>
</tr>
<tr>
<td></td>
<td>Box-plot-bars</td>
<td>Juxtaposition</td>
<td>Repeating patterns, trends, outliers (non-contiguous)</td>
</tr>
<tr>
<td></td>
<td>Confidence band</td>
<td>Aggregation</td>
<td>Typical utilization profiles</td>
</tr>
<tr>
<td></td>
<td>line chart</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Superimposed line chart</td>
<td>Superposition</td>
<td>Within-session patterns, outliers</td>
</tr>
</tbody>
</table>
Reusable Visualization Components

<table>
<thead>
<tr>
<th>Temporal</th>
<th>Layout</th>
<th>Visual Encoding</th>
<th>Facet</th>
<th>Comparisons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sparkline</td>
<td>Juxtaposition</td>
<td>Repeating patterns, trends, outliers (contiguous)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Box-plot-bars</td>
<td>Juxtaposition</td>
<td>Repeating patterns, trends, outliers (non-contiguous)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Confidence band line chart</td>
<td>Aggregation</td>
<td>Typical utilization profiles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Superimposed line chart</td>
<td>Superposition</td>
<td>Within-session patterns, outliers</td>
<td></td>
</tr>
</tbody>
</table>

Why? How? What?

- **Why?**
 - **Encode**
 - **Manipulate**
 - **Facet**
 - **Reduce**
 - **Arrange**
 - **Map**
 - **Change**
 - **Select**
 - **Navigate**
 - **Express**
 - **Separate**
 - **Order**
 - **Align**
 - **Use**
 - **Juxtapose**
 - **Partition**
 - **Superimpose**
 - **Filter**
 - **Aggregate**
 - **Embed**

- **How?**
 - **Color**
 - **Motion**
 - **Position, Size, Angle, Curvature, ...**
 - **Hue**
 - **Saturation**
 - **Luminance**
 - **Transparency**
 - **Region, Shape, ...**
 - **Direction, Rate, Frequency, ...**

- **What?**
Reusable Visualization Components

<table>
<thead>
<tr>
<th>Layout</th>
<th>Visual Encoding</th>
<th>Facet</th>
<th>Comparisons</th>
</tr>
</thead>
</table>
| Temporal
| Sparkline | Juxtaposition | Repeating patterns, trends, outliers (contiguous) |
| Box-plot-bars | Juxtaposition | Repeating patterns, trends, outliers (non-contiguous) |
| Confidence band line chart | Aggregation | Typical utilization profiles |
| Superimposed line chart | Superposition | Within-session patterns, outliers |
| Spatial
| Floor plan with symbols | Superposition | Within local spatial neighborhood |
| Spatial heatmap | Containment (nested) | Across distributed regions |
Ocupado Interfaces
Ocupado Contributions

- Analysis and abstraction of data and tasks for studying space utilization
- Ocupado, a set of visual decision support tools
- Generalizable design choices for visualizing non-trajectory spatiotemporal data relating to large-scale indoor environments
MizBee

A Multiscale Synteny Browser

joint work with:
Miriah Meyer, Hanspeter Pfister

http://www.cs.utah.edu/~miriah/mizbee

MizBee: A Multiscale Synteny Browser.
https://www.youtube.com/watch?v=86p7brwuz2g
What: Data abstraction

• data: multiscale lists
 – features: hundreds of thousands
 • ordered attribute: position in chromosome sequence coordinates
 • categorical attributes: orientation, chromosome of matching feature
 • quantitative attributes: length, similarity score
 – syntenic blocks: thousands
 • contiguous sets of features on same chromosome
 • combine thresholded features if
 – destination chromosome and orientation match
 – close together
 – chromosomes: dozens
 – genomes: two
Why: Tasks in domain language

• analyze conservation (similarity) relationships between genomic features
 – high-level biology questions
 • evolution
 – how long ago did two species share common ancestor?
 • function
 – which segment of the genome is responsible for specific function in the cell?
 • ...
 – low-level data-centric questions
 • algorithm refinement
 – are paired features within a block contiguous?
 – which chromosomes share conserved blocks?
 – are similarity scores alike within block?
 – ...

Why: Tasks abstraction

- **relationship types:** proximity, size, orientation, similarity
- **data scales:** genome, chromosome, block, feature
- **topics:** algorithm in/out, block reliability, high-level science

<table>
<thead>
<tr>
<th>Question</th>
<th>Genome</th>
<th>Chromosome</th>
<th>Block</th>
<th>Feature</th>
<th>Proximity/Location</th>
<th>Size</th>
<th>Orientation</th>
<th>Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Which chromosomes share conserved blocks?</td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For one chromosome, how many other chromosomes does it share blocks with?</td>
<td>× ×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What is the density of coverage and where are the gaps on: chromosomes? blocks?</td>
<td>× × ×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Where are the blocks: on chromosomes? around a specific location on a chromosome?</td>
<td>× ×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What are the sizes and locations of other genomic features near a block?</td>
<td>× × ×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>How large are the blocks?</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do neighboring blocks go to the same: chromosomes? relative location on a chromosome?</td>
<td>× ×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are the orientations matched or inverted for: block pairs? feature pairs?</td>
<td>× ×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do the orientations match for pairs of: neighboring blocks? features within a block?</td>
<td>× ×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are similarity scores alike: with respect to neighboring blocks? within a block?</td>
<td>× ×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are the paired features within a block contiguous?</td>
<td>×</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>How large is a feature relative to other genes within a block?</td>
<td>×</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What are the sizes, locations, and names of features within a block?</td>
<td>× × ×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What are the differences between individual nucleotides of feature pairs?</td>
<td>×</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How: Idiom design choices

- encode match relationships between chromosome segments with both
 - color

 ![chromosome segments with color](chromosome_color.png)
 - connection marks

 ![chromosome segments with connection marks](chromosome_marks.png)

- **Identity Channels: Categorical Attributes**
 - Spatial region
 - Color hue
 - Motion
 - Shape

- **Marks As Links**
 - Containment
 - Connection
How: Arrange space

- design space of arrangements

<table>
<thead>
<tr>
<th>contiguous</th>
<th>discrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear</td>
<td>segregated</td>
</tr>
<tr>
<td>circular</td>
<td>interleaved</td>
</tr>
</tbody>
</table>

Mauve [Darling04]

Cinteny

MizBee

Apollo [Lewis02]
How: Idiom design choices

• juxtapose linked views
 – multiform overview-detail
 • three views: genome, chromosome, block
 • different visual encoding in each
How: Idiom design choices

• axis orientation
 – radial: genome
 – rectilinear: chromosome, block
 • aligned position more accurate than angle

Axial Orientation
 → Rectilinear → Parallel → Radial

Magnitude Channels: Ordered Attributes
- Position on common scale
- Position on unaligned scale
- Length (1D size)
- Tilt/angle
How: Idiom design choices

• filter
How: Idiom design choices

• outer ring: summarize relationships with color
 – select one chromosome from set of source chromosomes

• inner ring:
 – destination chromosomes around copy of selected source chromosome
 – show relationship details with connection marks as well as color
MizBee contributions

• first synteny browser with side-by-side linked views
 – across the range of scales
 – encoding all four conservation relationship types
 • proximity, size, orientation, similarity

• open source
 http://www.cs.utah.edu/~miriah/mizbee
Visualization: Abstractions & idioms

• levels of design
 – identify abstractions
 • crucial & difficult, iterative process
 – select appropriate idioms
 • or create new ones if necessary

• three examples
 – different domains
 – different abstractions
 – different idioms
More information

• theoretical foundations: book (+ tutorial/course lecture slides)
 http://www.cs.ubc.ca/~tmm/vadbook

Visualization Analysis and Design.
 Munzner.
 AK Peters Visualization Series.
 CRC Press, 2014.

• papers, videos, software, talks, courses
 http://www.cs.ubc.ca/group/infovis
 http://www.cs.ubc.ca/~tmm

• this talk
 http://www.cs.ubc.ca/~tmm/talks.html#coimbra22