Visualization: Abstractions & Idioms

Tamara Munzner

Department of Computer Science University of British Columbia

<u>@tamaramunzner</u>

University of Coimbra Guest Lecture 9 Mar 2022, virtual / Coimbra, Portugal

http://www.cs.ubc.ca/~tmm/talks.html#coimbra22

DESIGNING for PEOPLE

AIDA

Visualization defined & motivated

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- suitable when human in the loop needs details
 - interplay between human judgement and automatic computation

Anscombe's Quartet

Datasaurus Dozen

•	ř		2	(Mean: (Mean:	54.2600597 47.8349704
•	•	e)	(SD: (SD:	16.7693464 26.9307231
	*	.*	(: 100	-0.0601630
20	40 10 X	80	100		

Same Stats, Different Graphs: Generating Datasets with Varied Appearance and Identical Statistics through Simulated Annealing. CHI 2017. Matejka & Fitzmaurice

Why focus on tasks and effectiveness?

Computer-based visualization systems provide visual representations of datasets designed to help people carry ou tasks more effectively.

- effectiveness requires match between data/task and representation - set of representations is huge
 - -many are ineffective mismatch for specific data/task combo
 - -increases chance of finding good solutions if you understand full space of possibilities

+ good • okay - poor

good okay poor

know

consider

know

consider

propose

select

select

Why focus on tasks and effectiveness?

Computer-based visualization systems provide visual representations of datasets designed to help people carry ou tasks more effectively.

- effectiveness requires match between data/task and representation - set of representations is huge
 - -many are ineffective mismatch for specific data/task combo
 - -increases chance of finding good solutions if you understand full space of possibilities
- what counts as effective?
 - novel: enable entirely new kinds of analysis
 - -faster: speed up existing workflows
- how to validate effectiveness
 - -many methods, must pick appropriate one for your context

domain				
abstraction				
idiom				
algorithm				

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

- *domain* situation
 - -who are the target users?

domain				
abstraction				
idiom				
algorithm				

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

- domain situation
 - -who are the target users?
- abstraction
 - -translate from specifics of domain to vocabulary of vis

domain				
abstraction				
idiom				
algorithm				

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

- domain situation
 - -who are the target users?
- abstraction
 - -translate from specifics of domain to vocabulary of vis
 - -what is shown? data abstraction

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

- *domain* situation
 - -who are the target users?
- abstraction
 - -translate from specifics of domain to vocabulary of vis
 - -what is shown? data abstraction
 - often don't just draw what you're given: transform to new form

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

- *domain* situation
 - -who are the target users?
- abstraction
 - -translate from specifics of domain to vocabulary of vis
 - -what is shown? data abstraction
 - often don't just draw what you're given: transform to new form
 - -why is the user looking at it? task abstraction

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

- domain situation
 - -who are the target users?
- abstraction
 - -translate from specifics of domain to vocabulary of vis
 - -what is shown? data abstraction
 - often don't just draw what you're given: transform to new form
 - -why is the user looking at it? task abstraction
- idiom
 - -how is it shown?

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

- domain situation
 - -who are the target users?
- abstraction
 - -translate from specifics of domain to vocabulary of vis
 - -what is shown? data abstraction
 - often don't just draw what you're given: transform to new form
 - -why is the user looking at it? task abstraction
- idiom
 - -how is it shown?
 - visual encoding idiom: how to draw

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

- domain situation
 - -who are the target users?
- abstraction
 - -translate from specifics of domain to vocabulary of vis
 - -what is shown? data abstraction
 - often don't just draw what you're given: transform to new form
 - -why is the user looking at it? task abstraction
- idiom
 - -how is it shown?
 - visual encoding idiom: how to draw
 - interaction idiom: how to manipulate

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

- domain situation
 - -who are the target users?
- abstraction
 - -translate from specifics of domain to vocabulary of vis
 - -what is shown? data abstraction
 - often don't just draw what you're given: transform to new form
 - -why is the user looking at it? task abstraction
- idiom
 - -how is it shown?
 - visual encoding idiom: how to draw
 - interaction idiom: how to manipulate
- algorithm
 - efficient computation

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

• different ways to get it wrong at each level

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

• different ways to get it wrong at each level

Domain situation You misunderstood their needs

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

• different ways to get it wrong at each level

Domain situation You misunderstood their needs

Data/task abstractionYou're showing them the wrong thing

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

• different ways to get it wrong at each level

Domain situation You misunderstood their needs

Data/task abstractionYou're showing them the wrong thing

Wisual encoding/interaction idiom The way you show it doesn't work

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

• different ways to get it wrong at each level

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

computer science Algorithm Measure system time/memory Analyze computational complexity

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

technique-driven work

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

technique-driven work

anthropology/ ethnography

design

computer science

cognitive psychology

anthropology/ ethnography

Domain situation Observe target users using existing tools
Data/task abstraction
Visual encoding/interaction idiom Justify design with respect to alternatives
Algorithm Measure system time/memory Analyze computational complexity
Analyze results qualitatively Measure human time with lab experiment (<i>lab study</i>)
Observe target users after deployment (field study)
Measure adoption

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

technique-driven work

anthropology/ ethnography

design

computer science

cognitive psychology

anthropology/ ethnography

Domain situation Observe target users using existing tools	
Data/task abstraction	
Visual encoding/interaction idiom Justify design with respect to alternatives	
Algorithm Measure system time/memory Analyze computational complexity	teo wo
Analyze results qualitatively Measure human time with lab experiment (<i>lab study</i>)	
Observe target users after deployment (field study)	
Measure adoption	

chnique-driven ork

• avoid mismatches between level and validation

anthropology/ ethnography

design

computer science

cognitive psychology

anthropology/ ethnography

Domain situation Observe target users using existing tools	
Data/task abstraction	
Visual encoding/interaction idiom Justify design with respect to alternatives	i
Algorithm Measure system time/memory Analyze computational complexity	teo wo
Analyze results qualitatively Measure human time with lab experiment (<i>lab study</i>)	
Observe target users after deployment (field study)	
Measure adoption	

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

<mark>chnique-driven</mark> ork

problemdriven work

Three case studies: Abstractions & idioms

• e-commerce

• facilities management

biology

•••

37

Three case studies: Abstractions & idioms

• e-commerce

• facilities management

biology

38

Segmentifier

Interactive Refinement of Clickstream Data

http://www.cs.ubc.ca/labs/imager/tr/2019/segmentifier

Segmentifier: Interactive Refinement of Clickstream Data. Dextras-Romagnino and Munzner. Computer Graphics Forum (Proc. EuroVis 2019) 38(3):623-634 2019

Kim Dextras-Romagnino

E-commerce: mobile apps for large companies

40

What are the **Data and Task Abstractions** for *Clickstream Data Analysis?*

Clickstream Data

Clickstream Analysis Tasks

Segmentifier Analysis Model

What is *Clickstream Data*?

Data: Actions

Data: Action Attributes

Data: Action Types

Action Hierarchy

Action Hierarchy

Data: Sequences

Data: Sequences

Data: Client Sequences

Client Sequences: all actions performed by a single user

Data: Session Sequences

Session Sequences: all actions performed by a single user within a defined amount of time (Δ) from each other. Δ is usually 30 min.

Data: Sequence Attributes

Data: Segments

Segment: any set of sequences

Data: Segment Attributes

Scale is huge

Scale is huge

Variability is high

Most work **fails** when applied to real-world data

What are **Clickstream Data Analysis Tasks?**

Tasks: Segment Behavior

Segment

Behavior: set of attribute constraints

Behavior

Viewed 4 pages Purchased Between 9 - 10 am

Tasks: Segment Behavior

Segment

Behavior Viewed 4 pages Purchased Between 9 - 10 am Start time

- Expected
- Unexpected
- Favorable Purchased
- Unfavorable Bounced

Behavior: set of attribute constraints

Users add to cart before purchasing

No purchases on a certain month

Identify: Find some set of sequences that constitutes interesting *behavior*

Identify: Find some set of sequences that constitutes interesting *behavior*

Drilldown: Distinguish more specific *behaviors* to further partition a segment previously defined by looser constraints

Identify: Find some set of sequences that constitutes interesting *behavior*

Drilldown: Distinguish more specific *behaviors* to further partition a segment previously defined by looser constraints

Frequency: Determine how many sequences are in the segment defined by *behavior*

Identify: Find some set of sequences that constitutes interesting *behavior*

Drilldown: Distinguish more specific *behaviors* to further partition a segment previously defined by looser constraints

Frequency: Determine how many sequences are in the segment defined by *behavior*

Ordering within sequence: Match if one action subsequence occurs before (or after) another action subsequence in a sequence

- Abstraction above task/data level to provide design rationale
- Take a *giant, noisy dataset* and refine it into *small, clean segments* for
 - actionable insights
 - downstream analysis
- Bridge the gap between *real-world data* and other techniques

Record	
View	
Segment	
Sequences	
Actions	

- - **Action Attributes** Ο
 - Sequence Attributes Ο
 - Segment Attributes Ο
- Leads to:
 - Insights Ο
 - New ways on how to refine Ο
 - Ο
 - Ο

Gives Insight into underlying data of segment

Whether segment should be *abandoned* Whether segment should be *exported*

Apply operation to create new segments

- Record all refinement steps automatically
 Keep track of questions asked and hypotheses
- Keep track of qu tested
- Ability to create and view multiple segments from the same segment

Record

Technique

- analysis, to more specific tools:
 - Pattern mining Ο
 - Clustering Ο

Export refined segments for further downstream

Discover actionable insight by *viewing* segment
High-Level Segmentifier Analysis Model

- - No actionable insights Ο
 - No further ways to refine Ο
 - Not suitable for *export* Ο

By *viewing* the segment, analyst *abandons* if:

Why Visual Analytics?

- Automation would be nice... • Put data in, actionable results appear
- ... but it is not realistic
 - Many possible questions, data-driven interplay between finding answers and generating new questions
- Human-in-the-loop visual data analysis
 - Integrate computing power of machine with \bigcirc intuition of domain experts

Solution

75

The Segmentifier Interface

Video

Segmentifier: Interactively Refining Clickstream Data into Actionable Segments

https://www.youtube.com/watch?v=TobYDFeISOg

Segmentifier Contributions

Thorough characterization of task and data abstraction for clickstream data analysis

Segmentifier Contributions

- Thorough characterization of task and data abstraction for clickstream data analysis
- Segmentifier: novel analytics interface for refining data segments and viewing characteristics before downstream fine-grained analysis

Segmentifier Contributions

- Thorough characterization of task and data abstraction for clickstream data analysis
- Segmentifier: novel analytics interface for refining data segments and viewing characteristics before downstream fine-grained analysis
- > Preliminary evidence of utility

Three case studies of problem-driven work

• e-commerce

• facilities management

biology

81

Ocupado Visualizing Location-Based Counts Over Time Across Buildings

http://www.cs.ubc.ca/labs/imager/tr/2020/ocupado/

Ocupado: Visualizing Location-Based Counts Over Time Across Buildings.

Oppermann and Munzner. Computer Graphics Forum (Proc. EuroVis 2020) 39(3):127-138 2020.

Michael Oppermann

Video

https://www.youtube.com/watch?v=KcwjVK8eUdw

Location-Based Counts

- Regular intervals (e.g., every 5 minutes)
- → Spatial hierarchy (Zone → Floor → Building → Campus)
- No trajectories or device identifiers are recorded
- Intrinsic privacy advantages

Data

Automated **HVAC** control

Data

86

Decision

WiFi connections as a proxy for occupancy

WiFi connections as a proxy for occupancy

Interviews with potential stakeholders

Focus Domains

- Space planning
- Building management
- Custodial services
- Classroom management
- Data quality control

91

Focus Domains

- Space planning
- Building management
- Custodial services
- Classroom management
- Data quality control

Semi-structured discussions and live demos

Do students occupy room x in evenings or on weekends?

ns. 1 weekends?

Confirm assumptions or previous observations.

Monitor the current/recent utilization rate. Which rooms are empty/busy?

Confirm assumptions or previous observations.

Monitor the current/recent utilization rate.

Communicate space usage and justify decisions. Space usage improved after renovation.

Confirm assumptions or previous observations.

Monitor the current/recent utilization rate.

Communicate space usage and justify decisions.

Validate the data (quality control). Check minimum size of a room that can be captured.

Spatial and Temporal Data Granularities

Visualization Prototypes

Data sketches, static data export

Time

98

Visualization Prototypes

Data sketches, static data export

- original plan: different interface for each stakeholder
- realization: task & data abstractions match multiple stakeholders
 - if slice by space & time granularity

Spatial and Temporal Data Granularities

Regions of interest

Building

Spatial and Temporal Data Granularities

last 12 hours

Weekends

Fr 8-10am

Visualization Prototypes

Sandbox

Data sketches, static data export

Campus Explorer

Live-data stream, cross-building analysis

Time

Building Recent

Building Long-term

Region Compare

Layout	Visual Encoding	Facet	Compariso
	Sparkline	Juxtaposition	Repeating (contiguo

ons

g patterns, trends, outliers ous)

Layout	Visual Encoding	Facet	Compariso
	Sparkline	Juxtaposition	Repeating (contiguo
	Box-plot-bars	Juxtaposition	Repeating (non-cont

ons

g patterns, trends, outliers ous)

g patterns, trends, outliers *tiguous)*

Layout	Visual Encoding	Facet	Compariso
	Sparkline	Juxtaposition	Repeating (contiguo
	Box-plot-bars	Juxtaposition	Repeating (non-cont
	Confidence band line chart	Aggregation	Typical ut

ons

g patterns, trends, outliers ous)

g patterns, trends, outliers *tiguous)*

tilization profiles

Layout	Visual Encoding	Facet	Compariso
	Sparkline	Juxtaposition	Repeating (contiguo
	Box-plot-bars	Juxtaposition	Repeating (non-cont
	Confidence band line chart	Aggregation	Typical ut
	Superimposed line chart	Superposition	Within-se

ons

g patterns, trends, outliers ous)

g patterns, trends, outliers *tiguous)*

tilization profiles

ession patterns, outliers

Repeating patterns, trends, outliers

Repeating patterns, trends, outliers

Typical utilization profiles

Within-session patterns, outliers
Reusable Visualization Components

Repeating patterns, trends, outliers

Repeating patterns, trends, outliers

Typical utilization profiles

Within-session patterns, outliers

Within local spatial neighborhood

Across distributed regions

Ocupado Interfaces

Ocupado Contributions

- Analysis and abstraction of data and tasks for studying space utilization
- Ocupado, a set of visual decision support tools
- Generalizable design choices for visualizing non-trajectory spatiotemporal data relating to large-scale indoor environments

MizBee

A Multiscale Synteny Browser

joint work with:

Miriah Meyer, Hanspeter Pfister

http://www.cs.utah.edu/~miriah/mizbee

MizBee: A Multiscale Synteny Browser. Meyer, Munzner, Pfister. IEEE Trans. Visualization and Computer Graphics 15(6):897-904, 2009 (Proc. InfoVis 2009).

Video

https://www.youtube.com/watch?v=86p7brwuz2g

What: Data abstraction

- data: multiscale lists
 - -features: hundreds of thousands
 - ordered attribute: position in chromosome sequence coordinates
 - categorical attributes: orientation, chromosome of matching feature
 - quantitative attributes: length, similarity score
 - syntenic blocks: thousands
 - contiguous sets of features on same chromosome
 - combine thresholded features if
 - destination chromosome and orientation match
 - close together
 - chromosomes: dozens
 - genomes: two

es Ture

Why: Tasks in domain language

- analyze conservation (similarity) relationships between genomic features
 - -high-level biology questions
 - evolution
 - how long ago did two species share common ancestor?
 - function
 - which segment of the genome is responsible for specific function in the cell?
 - •
 - -low-level data-centric questions
 - algorithm refinement
 - are paired features within a block contiguous?
 - which chromosomes share conserved blocks?
 - are similarity scores alike within block?

Why: Tasks abstraction

- relationship types: proximity, size, orientation, similarity
- data scales: genome, chromosome, block, feature
- topics: algorithm in/out, block reliability, high-level science

Which chromosomes share conserved blocks?

For one chromosome, how many other chromosomes does it share blocks with?

What is the density of coverage and where are the gaps on: chromosomes? blocks?

Where are the blocks: on chromosomes? around a specific location on a chromosome?

What are the sizes and locations of other genomic features near a block?

How large are the blocks?

Do neighboring blocks go to the same: chromosomes? relative location on a chromosome?

Are the orientations matched or inverted for: block pairs? feature pairs?

Do the orientations match for pairs of: neighboring blocks? features within a block?

Are similarity scores alike: with respect to neighboring blocks? within a block?

Are the paired features within a block contiguous?

How large is a feature relative to other genes within a block?

What are the sizes, locations, and names of features within a block?

What are the differences between individual nucleotides of feature pairs?

rela	atic	onsł	nip	ation	scale		
genome	chromosome	block	feature	proximity / loca	size	orientation	similarity
X				x			
X	x			x			
X	x	X		x			
X	x			X			
	x			x	X		
	x				X		
X	x			x			
	x	X				X	
	x	X				X	
	x	X					x
		X		x			
		X			X		
		X		x	X		
			X				X 16

• encode match relationships between chromosome segments with both

How: Arrange space

• design space of arrangements

Apollo [Lewis02]

- juxtapose linked views
 - multiform overview-detail
 - three views: genome, chromosome, block
 - different visual encoding in each

→ Juxtapose

Data										
	S	ubset	None							
ant		Overview/ Detail	Small M	•••••••						
•• n		Multiform, Overview/ Detail	No Linkage							

- axis orientation
 - radial: genome
 - rectilinear: chromosome, block
 - aligned position more accurate than angle

Arrange

Length (1D size)

Tilt/angle

Magnitude Channels: Ordered Attributes

• filter

|**24**

- outer ring: summarize relationships with color
 - select one chromosome from set of source chromosomes
- inner ring:
 - destination chromosomes around copy of selected source chromosome
 - -show relationship details with connection marks as well as color

Actions

MizBee contributions

- first synteny browser with side-by-side linked views

 across the range of scales
 - -encoding all four conservation relationship types
 - proximity, size, orientation, similarity
- open source <u>http://www.cs.utah.edu/~miriah/mizbee</u>

Visualization: Abstractions & idioms

- levels of design
 - -identify abstractions
 - crucial & difficult, iterative process
 - select appropriate idioms
 - or create new ones if necessary
- three examples
 - different domains
 - -different abstractions
 - different idioms

More information

• theoretical foundations: book (+ tutorial/course lecture slides)

http://www.cs.ubc.ca/~tmm/vadbook

Visualization Analysis and Design. Munzner. **AK** Peters Visualization Series. CRC Press, 2014.

- papers, videos, software, talks, courses http://www.cs.ubc.ca/group/infovis http://www.cs.ubc.ca/~tmm
- this talk

http://www.cs.ubc.ca/~tmm/talks.html#coimbra22

