Scalable Visualization with Accordion Drawing

Tamara Munzner

University of British Columbia

5 February 2005
Vancouver Studies in Cognitive Systems 2005
Accordion Drawing

rubber-sheet navigation
 - stretch part of surface
 - the rest squishes
 - borders nailed down
 - helps maintain orientation
Accordion Drawing

- rubber-sheet navigation
 - stretch part of surface
 - the rest squishes
 - borders nailed down
 - helps maintain orientation

- guaranteed visibility
 - landmarks stay visible
 - never offscreen
 - visible mark even if very squished
 - helps guide navigation choices
Accordion Drawing Framework

infrastructure for motion, marking, rendering

eample datasets
 - trees
 built-in hierarchical structure
 - gene sequences
 dense, partially vertically correlated
 - transactions in power set space
 very sparse, huge space

[video]
Outline

Accordion Drawing

Example Applications
 · Trees
 · Sequences
 · Power Sets
Rubber-Sheet Navigation

Focus+Context technique

- merge overview and details for single combined view
- rectilinear, multiple foci [Sarkar 94, Robertson 91]
Hierarchical Grid

two directions, horizontal and vertical

two valid interpretations for SplitLines
 · linear ordering
 · hierarchical subdivision of space
 child splits parent in two

application maps from 2D layout to grid
Grid Motion

move a set of SplitLines
 · grow several regions simultaneously
 · shrink the rest

 · new $O(k \log n)$ algorithm
 $k = \#$ lines to move
 $n = \#$ lines total
 · robust calculation, move each line only once
Guaranteed Mark Visibility
Marks

regions of interest shown with color highlight
 · differences between datasets
 · search results
 · user selections

guide navigation
 · safe to avoid empty places
 no false negatives, lack of mark meaningful
 · investigate marked areas
 squished marks are visible placeholders
 seeing details still requires navigation

provide landmarks
 · relative positions stay the same
 · "green area I looked at first is underneath blue one"
Guaranteed Visibility

infrastructure needed for efficient computation

relief from exhaustive exploration
 · missed marks lead to false conclusions
 · hard to determine completion
 · tedious, error-prone

compelling reason for Focus+Context
 · controversy: does distortion help or hurt?
 · strong rationale for comparison

constraint to fit everything in viewport
 · instead could show indirectly
 · ideas: Halo [Baudisch 03]
Guaranteed Visibility Previous Work

visibility of abstract information

- effective view navigation [Furnas 97]
- critical zones [Jul and Furnas 98]
How Could Marks Disappear?

- moving outside viewport
- choose global Focus+Context navigation
 "tacked-down" borders
 as opposed to free camera motion
Focus + Context Previous Work

combine overview and detail into single view

Focus + Context

- large tree browsing
 Cone Trees [Robertson et al 91]
 Hyperbolic Trees [Lamping et al 95, Munzner 97]
 Space Tree [Plaisant et al 03]
 DOI Tree [Card and Nation 02]
- global
 Document Lens [Robertson and Mackinlay 93]
 Rubber Sheets [Sarker et al 93]

our contribution

- scalability, guaranteed visibility
How Could Marks Disappear?

moving outside viewport
 · choose global Focus+Context navigation
 "nailed-down" borders
 · as opposed to free camera motion

occlusion
 · choose 2D++ layout
 · as opposed to 3D layout

culling at subpixel sizes
 · develop efficient check for marks when culling
Rendering

rubber sheet navigation challenges
 · depth complexity changes quickly
 · can be extremely high, thousands of objects per pixel

guaranteed visibility challenges
 · avoid overculling
 violate guaranteed visibility constraint
 · avoid underculling
 inefficient, overdraw same pixel multiple times

want render time to depend on screen area
 · not size of dataset
Near-Constant Rendering Time
Rendering Time: Trees (3.5M)
Rendering Time: Power Sets (1.5M)
Rendering Time: Sequences (40M)
Preprocessing Time: Sequences (70 sec)
Scalability Limits

memory footprint is limitation
 · everything must fit into main memory

previous systems
 · TJ: 250–500K nodes
 · SJ 1.7M nodes

now
 · TJ: 3.5M nodes
 · SJ: 40M nodes
 · PSV: 1.5M nodes
Linear Memory Usage

![Graphs showing memory usage vs. tree size, total transaction size, and total sequence size](image)
Memory Usage: Trees (3.5M)
Memory Usage: Power Sets (1.5M)
Memory Usage: Sequences (40M)
Outline

Accordion Drawing

Example Applications
- Trees
- Sequences
- Power Sets
TreeJuxtaposer

active area: hierarchy browsing

- previous work: browsing
- tree comparison was still open problem

bioinformatics application

- phylogenetic trees reconstructed from DNA
- rectilinear layout, following conventions
[M Meegaskumbura et al., Science, 298:379 (2002)]
Common Tree Size Now

[A diagram showing a phylogenetic tree with various frog species and their relationships.]

[M Meegaskumbura et al., Science, 298:379 (2002)]
Tree of Life: 10M Species

[David Hillis, Science, 300:1687, 2003]
Comparing Trees

multiple trees
 · from phylogenetic reconstruction
 · algorithms returns many possibilities

comparing contiguous groups
 · clade: ancestor + all descendants
 · is a clade in one tree also a clade in other?
 · is some group a clade?
Paper Comparison

focus

context

Will Fischer, UT–Austin, May 2003
Biologists' Requirements

reliable detection of structural differences
 · rapid identification of interesting spots

analyses of differences in context
 · mostly side by side comparison

manipulation of increasingly larger trees

support for multiple platforms
 · Java with OpenGL bindings
TreeJuxtaposer Contributions

first interactive tree comparison system
 · automatic structural difference computation
 · guaranteed visibility of landmark areas

scalable to large datasets
 · 250,000 to 500,000 total nodes
 · new work: 3.5 million nodes
 · all preprocessing subquadratic
 · all realtime rendering sublinear

techniques broadly applicable
 · not limited to biological trees

overall winner: InfoVis Contest 2003
Outline

Accordion Drawing

Example Applications
 · Trees
 · Sequences
 · Power Sets
SequenceJuxtaposer

accordion drawing for DNA/RNA

previous work: web-based sequence browsers
 · Ensembl, UCSC Genome Browser, NCBI MapViewer
 · heavily used, huge server-side databases

 · zoom or pan in jumps
 · can't see context

fluid Focus+Context navigation

guaranteed visibility
 · establish when these features useful
 · proof of concept prototype, eventually merge
SJ Layout

dense grid, following conventions
 · rows of sequences
 · partially correlated columns of aligned nucleotides
SJ in action

shown on publicly available data

- onion yellows phytoplasma: whole genome
 860 Kbp

- Murphy: 22 genes
 44 mammals x 17000 bp each = 748 Kbp

- Treezilla: single gene
 500 plants x 1428 bp each = 714 Kbp

[videos]

previous paper: 1.7 million nucleotides
currently: 40 million nucleotides
Outline

Accordion Drawing

Example Applications
 · Trees
 · Sequences
 · Power Sets
PowerSetViewer: Steerable Data Mining

investigating transaction logs

setting parameters for filtering operations
 · classic problem: too much or too little
 · engine allows parameter changes midstream

have a steering wheel: steerable data mining

need a windshield: visualization
 · want meaningful spatial layout as parameters change
 · scalability issue: what if filter is null?
 entire log passed through to viz client
Transactions As Sets

market-basket transactions are sets
· A bought \{bread, milk, eggs\}
· B bought \{bread, chocolate, cat food\}

alphabet: universe of possible items to buy
· all items in grocery store

space of all possible transactions
· set of all possible sets: power set
· huge, but only sparsely populated
· show distribution of log data within absolute space of possibilities
· accordion drawing preserves relative order
Enumeration of Power Set

order first by cardinality (set size)
within cardinality, order by alphabetical order
 · \{a\}, \{b\}, \{c\}, \{ab\}, \{ac\}, \{bc\}, \{abc\}

very long linear list
wrap scanline-style, at a fixed width
 · 128 columns, millions of rows

with conventional display, couldn't see anything
 · everything smaller than a pixel

with guaranteed visibility, marks are visible
 · construct hierarchical grid on the fly
 · add and delete SplitLines as needed
 · empty rows collapsed
Distribution of Transactions: 90K Log

- alphabet: available courses
- transactions: courses taken by student in one term
- highlighting: grad CS courses
Distribution of Transactions: 300K Log

- alphabet: items in grocery store
- transactions: items bought at once
- highlighting: sets containing specific item
Future Work

- trees with weighted edges
- sequence alignment editing
- protein sequences
- linking tree and sequence navigation
- open-source release of power set viewer
 - data mining: transaction processing
More information

olduvai.sourceforge.net
 · open-source release of TJ, SJ

www.cs.ubc.ca/~tmm/papers.html
www.cs.ubc.ca/~tmm/talks.html
 · papers, slides, images, movies
Published Papers

TreeJuxtaposer: Scalable Tree Comparison using Focus+Context with Guaranteed Visibility
Tamara Munzner, Francois Guimbretiere, Serdar Tasiran, Li Zhang, and Yunhong Zhou.
SIGGRAPH 2003, published as ACM Transactions on Graphics 22(3), pages 453--462

SequenceJuxtaposer: Fluid Navigation For Large-Scale Sequence Comparison In Context
James Slack, Kristian Hildebrand, Tamara Munzner, and Katherine St. John.

new: PowerSetViewer joint work with
Qiang Kong, UBC
Raymond Ng, UBC

new: TJC, TJC–Q joint work with
Dale Beerman, Virginia
Greg Humphreys, Virginia