Scalable Visualization with **Accordion Drawing**

Tamara Munzner

University of British Columbia

5 February 2005 Vancouver Studies in Cognitive Systems 2005

Accordion Drawing

rubber-sheet navigation

- stretch part of surface
- · the rest squishes
- · borders nailed down
- · helps maintain orientation

Accordion Drawing

rubber-sheet navigation

- stretch part of surface
- · the rest squishes
- · borders nailed down
- · helps maintain orientation

guaranteed visibility

- landmarks stay visible
- never offscreen
- · visible mark even if very squished
- helps guide navigation choices

Accordion Drawing Framework

infrastructure for motion, marking, rendering

example datasets

- trees
- built-in hierarchical structure gene sequences
- dense, partially vertically correllated
- transactions in power set space very sparse, huge space

[video]

Outline

Accordion Drawing

Example Applications

- Trees
- Sequences
- · Power Sets

Rubber-Sheet Navigation

Focus+Context technique

- merge overview and details for single combined view
- · rectilinear, multiple foci [Sarkar 94, Robertson 91]

Hierarchical Grid

two directions, horizontal and vertical

two valid interpretations for SplitLines

- linear ordering
- hierarchical subdivision of space child splits parent in two

application maps from 2D layout to grid

Grid Motion

move a set of SplitLines

- · grow several regions simultaneously
- shrink the rest
- \cdot new O(k log n) algorithm

k = # lines to move

n = # lines total

· robust calculation, move each line only once

8

Guaranteed Mark Visibility

9

11

Marks

regions of interest shown with color highlight

- · differences between datasets
- · search results
- · user selections

guide navigation

- safe to avoid empty places
- no false negatives, lack of mark meaningful
- · investigate marked areas
 - squished marks are visible placeholders seeing details still requires navigation

provide landmarks

- \cdot relative positions stay the same
- · "green area I looked at first is underneath blue one"

10

Guaranteed Visibility

infrastructure needed for efficient computation

relief from exhaustive exploration

- · missed marks lead to false conclusions
- · hard to determine completion
- · tedious, error-prone

compelling reason for Focus+Context

- controversy: does distortion help or hurt?
- strong rationale for comparison

constraint to fit everything in viewport

- · instead could show indirectly
- · ideas: Halo [Baudisch 03]

Guaranteed Visibility Previous Work

visibility of abstract information

- · effective view navigation [Furnas 97]
- · critical zones [Jul and Furnas 98]

How Could Marks Disappear?

moving outside viewport

choose global Focus+Context navigation "tacked-down" borders as opposed to free camera motion

Focus+Context Previous Work

combine overview and detail into single view

Focus+Context

- · large tree browsing
 - Cone Trees [Robertson et al 91]
 - Hyperbolic Trees [Lamping et al 95, Munzner 97] Space Tree [Plaisant et al 03]
 - DOI Tree [Card and Nation 02]
- · global
 - Document Lens [Robertson and Mackinlay 93] Rubber Sheets [Sarker et al 93]

our contribution

· scalability, guaranteed visibility

13

How Could Marks Disappear?

moving outside viewport

- · choose global Focus+Context navigation "nailed-down" borders
- · as opposed to free camera motion

occlusion

- · choose 2D++ layout
- · as opposed to 3D layout

culling at subpixel sizes

· develop efficient check for marks when culling

15

Rendering

rubber sheet navigation challenges

- depth complexity changes quickly
- can be extremely high, thousands of objects per pixel

guaranteed visibility challenges

- · avoid overculling
 - violate guaranteed visibility constraint
- · avoid underculling
 - inefficient, overdraw same pixel multiple times

want render time to depend on screen area

· not size of dataset

16

Near-Constant Rendering Time

Rendering Time: Trees (3.5M)

Rendering Time: Power Sets (1.5M)

Rendering Time: Sequences (40M)

Preprocessing Time: Sequences (70 sec)

Scalability Limits

memory footprint is limitation

· everything must fit into main memory

- previous systems TJ: 250–500K nodes
 - SJ 1.7M nodes

now

- TJ: 3.5M nodes
- · SJ: 40M nodes
- · PSV: 1.5M nodes

Linear Memory Usage

Memory Usage: Trees (3.5M)

Memory Usage: Power Sets (1.5M)

Memory Usage: Sequences (40M)

Outline

Accordion Drawing

Example Applications

- · Sequences
- · Power Sets

TreeJuxtaposer

active area: hierarchy browsing

- · previous work: browsing
- · tree comparison was still open problem

bioinformatics application

- · phylogenetic trees reconstructed from DNA
- · rectilinear layout, following conventions

Phylogenetic/Evolutionary Tree

27

29

[M Meegaskumbura et al., Science, 298:379 (2002)]

Common Tree Size Now

Tree of Life: 10M Species

[David Hillis, Science, 300:1687, 2003]

31

35

Comparing Trees

multiple trees

- · from phylogenetic reconstruction
- · algorithms returns many possibilities

comparing contiguous groups

- · clade: ancestor + all descendants
- · is a clade in one tree also a clade in other?
- · is some group a clade?

32

Paper Comparison

focus

context

Will Fischer, UT-Austin, May 2003

Biologists' Requirements

reliable detection of structural differences

· rapid identification of interesting spots

analyses of differences in context mostly side by side comparison

manipulation of increasingly larger trees

support for multiple platforms

· Java with OpenGL bindings

34

TreeJuxtaposer Contributions

first interactive tree comparison system

- automatic structural difference computation
- guaranteed visibility of landmark areas

scalable to large datasets

- · 250,000 to 500,000 total nodes
 - new work: 3.5 million nodes
- all preprecessing subquadratic
- all realtime rendering sublinear

techniques broadly applicable

· not limited to biological trees

overall winner: InfoVis Contest 2003

Outline

Accordion Drawing

Example Applications

- · Trees
- Sequences
- · Power Sets

SequenceJuxtaposer

accordion drawing for DNA/RNA

previous work: web-based sequence browsers

- Ensembl, UCSC Genome Browser, NCBI MapViewer
- · heavily used, huge server-side databases
- · zoom or pan in jumps
- can't see context

fluid Focus+Context navigation guaranteed visibility

- establish when these features useful
- · proof of concept prototype, eventually merge

37

SJ Layout

dense grid, following conventions

- · rows of sequences
- · partially correlated columns of aligned nucleotides

38

SJ in action

shown on publicly available data

- · onion yellows phytoplasma: whole genome 860 Kbp
- · Murphy: 22 genes 44 mammals x 17000 bp each = 748 Kbp
- · Treezilla: single gene 500 plants x 1428 bp each = 714 Kbp

[videos]

previous paper: 1.7 million nucleotides currently: 40 million nucleotides

Outline

Accordion Drawing

Example Applications

- Trees
- Sequences
- Power Sets

40

42

PowerSetViewer: Steerable Data Mining

investigating transaction logs

setting parameters for filtering operations

- · classic problem: too much or too little
- · engine allows parameter changes midstream

have a steering wheel: steerable data mining

need a windshield: visualization

· want meaningful spatial layout as parameters change

41

· scalability issue: what if filter is null? entire log passed through to viz client

Transactions As Sets

market-basket transactions are sets

- · A bought {bread, milk, eggs}
- · B bought {bread, chocolate, cat food}

alphabet: universe of possible items to buy

· all items in grocery store

space of all possible transactions

- set of all possible sets: power set
- huge, but only sparsely populated
- show distribution of log data within absolute space of possibilities
- · accordion drawing preserves relative order

Enumeration of Power Set

order first by cardinality (set size) within cardinality, order by alphabetical order · {a},{b},{c},{ab},{ac},{bc},{abc}

very long linear list wrap scanline-style, at a fixed width 128 columns, millions of rows

with conventional display, couldn't see anything everything smaller than a pixel

with guaranteed visibility, marks are visible

- construct hierarchical grid on the fly
- · add and delete SplitLines as needed
- empty rows collapsed

43

Distribution of Transactions: 90K Log

- · alphabet: available courses
- · transactions: courses taken by student in one term
- · highlighting: grad CS courses

Distribution of Transactions: 300K Log

- · alphabet: items in grocery store
- · transactions: items bought at once
- highlighting: sets containing specific item

Future Work

trees with weighted edges

sequence alignment editing

protein sequences

linking tree and sequence navigation

open-source release of power set viewer · data mining: transaction processing

More information

olduvai.sourceforge.net open-source release of TJ, SJ

www.cs.ubc.ca/~tmm/papers.html www.cs.ubc.ca/~tmm/talks.html · papers, slides, images, movies

Published Papers

TreeJuxtaposer: Scalable Tree Comparison using Focus+Context with Guaranteed

Visibility
Tamara Munzner, Francois Guimbretiere, Serdar Tasiran, Li Zhang, and Yunhong Zhou.
SIGGRAPH 2003, published as ACM Transactions on Graphics 22(3), pages 453--462

SequenceJuxtaposer: Fluid Navigation For Large-Scale Sequence Comparison In Context James Slack, Kristian Hildebrand, Tamara Munzner, and Katherine St. John.

Proc. German Conference on Bioinformatics 2004, pp 37-42

new: PowerSetViewer joint work with Qiang Kong, UBC Raymond Ng, UBC

new: TJC, TJC-Q joint work with Dale Beerman, Virginia Greg Humphreys, Virginia