Scalable Visualization with Accordion Drawing
Tamara Munzner
University of British Columbia
5 February 2005
Vancouver Studies in Cognitive Systems 2005

Accordion Drawing
rubber-sheet navigation
- stretch part of surface
- the rest squishes
- borders nailed down
- helps maintain orientation

guaranteed visibility
- landmarks stay visible
- never offscreen
- visible mark even if very squished
- helps guide navigation choices

Accordion Drawing Framework
infrastructure for motion, marking, rendering

dexample datasets
- trees built-in hierarchical structure
- gene sequences
dense, partially vertically correlated
- transactions in power set space
- very sparse, huge space

Outline

Accordion Drawing

Example Applications
- Trees
- Sequences
- Power Sets

Rubber-Sheet Navigation

Focus+Context technique
- merge overview and details for single combined view
- rectilinear, multiple foci [Sarkar 94, Robertson 91]
Hierarchical Grid

two directions, horizontal and vertical

two valid interpretations for SplitLines
 - linear ordering
 - hierarchical subdivision of space
 child splits parent in two

application maps from 2D layout to grid

Grid Motion

move a set of SplitLines
 - grow several regions simultaneously
 - shrink the rest
 - new $O(k \log n)$ algorithm
 - $k =$ # lines to move
 - $n =$ # lines total
 - robust calculation, move each line only once

Guaranteed Mark Visibility

Marks

regions of interest shown with color highlight
 - differences between datasets
 - search results
 - user selections

guide navigation
 - safe to avoid empty places
 - no false negatives, lack of mark meaningful
 - investigate marked areas
 - squished marks are visible placeholders
 - seeing details still requires navigation

provide landmarks
 - relative positions stay the same
 - “green area I looked at first is underneath blue one”

Guaranteed Visibility

infrastructure needed for efficient computation

relief from exhaustive exploration
 - missed marks lead to false conclusions
 - hard to determine completion
 - tedious, error–prone

compelling reason for Focus+Context
 - controversy: does distortion help or hurt?
 - strong rationale for comparison

constraint to fit everything in viewport
 - instead could show indirectly
 - ideas: Halo [Baudisch 03]

Guaranteed Visibility Previous Work

visibility of abstract information
 - effective view navigation [Furnas 97]
 - critical zones [Jul and Furnas 98]
How Could Marks Disappear?

moving outside viewport
- choose global Focus+Context navigation “tacked-down” borders
 as opposed to free camera motion

occlusion
- choose 2D++ layout
 as opposed to 3D layout

culling at subpixel sizes
- develop efficient check for marks when culling

Focus+Context Previous Work

combine overview and detail into single view

Focus+Context
- large tree browsing
 - Cone Trees [Robertson et al 91]
 - Hyperbolic Trees [Lamping et al 95, Munzner 97]
 - Space Tree [Plaisant et al 03]
 - DOI Tree [Card and Nation 02]
- global
 - Document Lens [Robertson and Mackinlay 93]
 - Rubber Sheets [Sarker et al 93]

our contribution
- scalability, guaranteed visibility

Rendering

rubber sheet navigation challenges
- depth complexity changes quickly
 - can be extremely high, thousands of objects per pixel

guaranteed visibility challenges
- avoid overculling
 - violate guaranteed visibility constraint
- avoid underculling
 - inefficient, overwrite same pixel multiple times

want render time to depend on screen area
- not size of dataset

Near-Constant Rendering Time

Rendering Time: Trees (3.5M)
Rendering Time: Power Sets (1.5M)

- Block size: 4 columns: 64
- Block size: 8 columns: 64
- Block size: 16 columns: 64
- Real block size: 4 columns: 64

![Graph showing rendering time vs total transaction size](image)

Rendering Time: Sequences (40M)

- Single
- Wide
- Square
- Taza
- Trexila
- Orion
- Murphy

![Graph showing rendering time vs total sequence size](image)

Preprocessing Time: Sequences (70 sec)

- Single
- Wide
- Square
- Taza
- Trexila
- Orion
- Murphy

![Graph showing preprocessing time vs total sequence size](image)

Scalability Limits

- Memory footprint is limitation
 - Everything must fit into main memory
- Previous systems
 - TJ: 250–500K nodes
 - SJ: 1.7M nodes
- Now
 - TJ: 3.5M nodes
 - SJ: 40M nodes
 - PSV: 1.5M nodes

Linear Memory Usage

- Balanced
- Class(1)
- Class(2)
- OpenDirectory(1)
- OpenDirectory(2)

![Graph showing memory usage vs tree size](image)

Memory Usage: Trees (3.5M)

- Balanced
- Class(1)
- Class(2)
- OpenDirectory(1)
- OpenDirectory(2)

![Graph showing memory usage vs tree size](image)
Outline

Accordion Drawing

Example Applications
- Trees
- Sequences
- Power Sets

TreeJuxtaposer

active area: hierarchy browsing
- previous work: browsing
- tree comparison was still open problem

bioinformatics application
- phylogenetic trees reconstructed from DNA
- rectilinear layout, following conventions

Phylogenetic/Evolutionary Tree

[Meegaskumbar et al., Science, 298:379 (2002)]

Common Tree Size Now

[Meegaskumbar et al., Science, 298:379 (2002)]
Tree of Life: 10M Species

Comparing Trees
- multiple trees
 - from phylogenetic reconstruction
 - algorithms return many possibilities
- comparing contiguous groups
 - clade: ancestor + all descendants
 - is a clade in one tree also a clade in other?
 - is some group a clade?

Paper Comparison
- focus
- context

Biologists’ Requirements
- reliable detection of structural differences
 - rapid identification of interesting spots
- analyses of differences in context
 - mostly side by side comparison
- manipulation of increasingly larger trees
- support for multiple platforms
 - Java with OpenGL bindings

TreeJuxtaposer Contributions
- first interactive tree comparison system
 - automatic structural difference computation
 - guaranteed visibility of landmark areas
- scalable to large datasets
 - 250,000 to 500,000 total nodes
 - new work: 3.5 million nodes
 - all preprocessing subquadratic
 - all realtime rendering sublinear
- techniques broadly applicable
 - not limited to biological trees
- overall winner: InfoVis Contest 2003

Outline
- Accordion Drawing
- Example Applications
 - Trees
 - Sequences
 - Power Sets
SequenceJuxtaposer
accordion drawing for DNA/RNA

previous work: web–based sequence browsers
- Ensembl, UCSC Genome Browser, NCBI MapViewer
 - heavily used, huge server–side databases
- zoom or pan in jumps
- can’t see context

fluid Focus+Context navigation
guaranteed visibility
- establish when these features useful
- proof of concept prototype, eventually merge

SJ in action
shown on publicly available data
- onion yellows phytoplasma: whole genome
 860 Kbp
- Murphy: 22 genes
 44 mammals x 17000 bp each = 748 Kbp
- Treezilla: single gene
 500 plants x 1428 bp each = 714 Kbp

[videos]

previous paper: 1.7 million nucleotides
currently: 40 million nucleotides

Outline

Accordion Drawing

Example Applications
- Trees
 - Sequences
 - Power Sets

PowerSetViewer: Steerable Data Mining
investigating transaction logs

setting parameters for filtering operations
- classic problem: too much or too little
 - engine allows parameter changes midstream

have a steering wheel: steerable data mining

need a windshield: visualization
- want meaningful spatial layout as parameters change
- scalability issue: what if filter is null?
 - entire log passed through to viz client

Transactions As Sets
market–basket transactions are sets
- A bought (bread, milk, eggs)
 - B bought (bread, chocolate, cat food)

alphabet: universe of possible items to buy
- all items in grocery store

space of all possible transactions
- set of all possible sets: power set
 - huge, but only sparsely populated
 - show distribution of log data within absolute space
 of possibilities
 - accordion drawing preserves relative order
Enumeration of Power Set

order first by cardinality (set size)
within cardinality, order by alphabetical order
[a], [b], [c], [ab], [ac], [bc], [abc]

very long linear list
wrap scanline-style, at a fixed width
- 128 columns, millions of rows

with conventional display, couldn’t see anything
- everything smaller than a pixel

with guaranteed visibility, marks are visible
- construct hierarchical grid on the fly
- add and delete SplitLines as needed
- empty rows collapsed

Distribution of Transactions: 300K Log

- alphabet: items in grocery store
- transactions: items bought at once
- highlighting: sets containing specific item

Distribution of Transactions: 90K Log

- alphabet: available courses
- transactions: courses taken by student in one term
- highlighting: grad CS courses

Future Work

trees with weighted edges

sequence alignment editing

protein sequences

linking tree and sequence navigation

open-source release of power set viewer
- data mining: transaction processing

More information

olduvai.sourceforge.net
- open-source release of Tj, Sj

www.cs.ubc.ca/~tmm/papers.html
www.cs.ubc.ca/~tmm/talks.html
- papers, slides, images, movies

Published Papers

Treejuxtaposer: Scalable Tree Comparison using Focus+Context with Guaranteed Visibility
Tamara Munzner, Francois Guimbretiere, Serdar Tasiran, Li Zhang, and Yunhong Zhou.

Sequencejuxtaposer: Fluid Navigation For Large-Scale Sequence Comparison In Context
James Slack, Kristian Hildebrand, Tamara Munzner, and Katherine St. John.

now PowerSetViewer: joint work with
Qiang Kong, UBC
Raymond Ng, UBC

new TJC, TJC-Q: joint work with
Dale Bremner, Virginia
Greg Humphreys, Virginia