Problem-Driven Visualization Through Design Studies

Tamara Munzner

Department of Computer Science University of British Columbia

<u>@tamaramunzner</u>

VINCI 2021 Keynote Sep 7 2021, virtual / Potsdam

http://www.cs.ubc.ca/~tmm/talks.html#vinci21

[A Nested Model of Visualization Design and Validation. Munzner. IEEETVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

- domain situation
 - -who are the target users?

[A Nested Model of Visualization Design and Validation. Munzner. IEEETVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

- domain situation
 - who are the target users?
- abstraction
 - -translate from specifics of domain to vocabulary of vis

[A Nested Model of Visualization Design and Validation. Munzner. IEEETVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

- domain situation
 - -who are the target users?
- abstraction
 - translate from specifics of domain to vocabulary of vis
 - what is shown? data abstraction

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

- domain situation
 - who are the target users?
- abstraction
 - -translate from specifics of domain to vocabulary of vis
 - what is shown? data abstraction
 - often don't just draw what you're given: transform to new form

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

- domain situation
 - who are the target users?
- abstraction
 - -translate from specifics of domain to vocabulary of vis
 - what is shown? data abstraction
 - often don't just draw what you're given: transform to new form
 - -why is the user looking at it? task abstraction

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

- domain situation
 - who are the target users?
- abstraction
 - -translate from specifics of domain to vocabulary of vis
 - what is shown? data abstraction
 - often don't just draw what you're given: transform to new form
 - -why is the user looking at it? task abstraction
- idiom
 - how is it shown?

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

- domain situation
 - who are the target users?
- abstraction
 - -translate from specifics of domain to vocabulary of vis
 - what is shown? data abstraction
 - often don't just draw what you're given: transform to new form
 - -why is the user looking at it? task abstraction
- idiom
 - how is it shown?
 - visual encoding idiom: how to draw

[A Nested Model of Visualization Design and Validation. Munzner. IEEETVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

- domain situation
 - who are the target users?
- abstraction
 - -translate from specifics of domain to vocabulary of vis
 - what is shown? data abstraction
 - often don't just draw what you're given: transform to new form
 - -why is the user looking at it? task abstraction
- idiom
 - how is it shown?
 - visual encoding idiom: how to draw
 - interaction idiom: how to manipulate

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

- domain situation
 - who are the target users?
- abstraction
 - -translate from specifics of domain to vocabulary of vis
 - what is shown? data abstraction
 - often don't just draw what you're given: transform to new form
 - -why is the user looking at it? task abstraction
- idiom
 - how is it shown?
 - visual encoding idiom: how to draw
 - interaction idiom: how to manipulate
- algorithm
 - -efficient computation

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

different ways to get it wrong at each level

different ways to get it wrong at each level

Domain situation

You misunderstood their needs

different ways to get it wrong at each level

Data/task abstraction
 You're showing them the wrong thing

different ways to get it wrong at each level

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

different ways to get it wrong at each level

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

computer science

Algorithm

Measure system time/memory
Analyze computational complexity

computer science

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

design

computer science

cognitive psychology

technique-driven work

anthropology/ ethnography

design

computer science

cognitive psychology

anthropology/ ethnography

technique-driven work

Domain situation anthropology/ Observe target users using existing tools ethnography Data/task abstraction Wisual encoding/interaction idiom design Justify design with respect to alternatives **Algorithm** computer Measure system time/memory science Analyze computational complexity cognitive Analyze results qualitatively psychology Measure human time with lab experiment (*lab study*) Observe target users after deployment (*field study*) anthropology/ ethnography Measure adoption

problem-driven technique-driven work

avoid mismatches between level and validation

Domain situation anthropology/ Observe target users using existing tools ethnography Data/task abstraction Wisual encoding/interaction idiom design Justify design with respect to alternatives **Algorithm** computer Measure system time/memory science work Analyze computational complexity cognitive Analyze results qualitatively psychology Measure human time with lab experiment (*lab study*) Observe target users after deployment (*field study*) anthropology/ ethnography Measure adoption

problem-driven technique-driven

problemdriven work

problemdriven work driven work

Problem-driven visualization: Design studies

Problem driven visualization: Design studies

"A design study is a project in which visualization researchers analyze a specific real-world problem faced by domain experts..."

Problem driven visualization: Design studies

"A design study is a project in which visualization researchers analyze a specific real-world problem faced by domain experts, design a visualization system that supports solving this problem..."

Problem driven visualization: Design studies

"A design study is a project in which visualization researchers analyze a specific real-world problem faced by domain experts, design a visualization system that supports solving this problem, validate the design, and reflect about lessons learned in order to refine visualization design guidelines."

Michael Sedlmair

Miriah Meyer

Design Study Methodology

Reflections from the Trenches and from the Stacks

http://www.cs.ubc.ca/labs/imager/tr/2012/dsm/

Lessons learned from the trenches: 20+ between us

Cerebral genomics

MizBee genomics

Pathline genomics

MulteeSum genomics

Vismon fisheries management

QuestVis sustainability

WiKeVis in-car networks

MostVis in-car networks

Car-X-Ray in-car networks

ProgSpy2010 in-car networks

RelEx in-car networks

Cardiogram in-car networks

AutobahnVis in-car networks

VisTra in-car networks

Constellation linguistics

LibVis cultural heritage

Caidants multicast

SessionViewer web log analysis

LiveRAC server hosting

PowerSetViewer data mining

Design study methodology: definitions

Design study methodology: definitions

[Design Study Methodology: Reflections from the Trenches and the Stacks. Sedlmair, Meyer & Munzner. IEEE TVCG 18(12): 2431-2440, 2012 (Proc. InfoVis 2012).]

Design study methodology: definitions

[Design Study Methodology: Reflections from the Trenches and the Stacks. Sedlmair, Meyer & Munzner. IEEE TVCG 18(12): 2431-2440, 2012 (Proc. InfoVis 2012).]

Design study methodology: definitions

[Design Study Methodology: Reflections from the Trenches and the Stacks. Sedlmair, Meyer & Munzner. IEEE TVCG 18(12): 2431-2440, 2012 (Proc. InfoVis 2012).]

Design study methodology: definitions

learn winnow cast

discover design implement deploy

• guidelines: confirm, refine, reject, propose

iterative

		T . 1
PF-1	premature advance: jumping forward over stages	general
PF-2	premature start: insufficient knowledge of vis literature	learn
PF-3	premature commitment: collaboration with wrong people	winnow
PF-4	no real data available (yet)	winnow
PF-5	insufficient time available from potential collaborators	winnow
PF-6	no need for visualization: problem can be automated	winnow
PF-7	researcher expertise does not match domain problem	winnow
PF-8	no need for research: engineering vs. research project	winnow
PF-9	no need for change: existing tools are good enough	winnow
PF-10	no real/important/recurring task	winnow
PF-11	no rapport with collaborators	winnow
PF-12	not identifying front line analyst and gatekeeper before start	cast
PF-13	assuming every project will have the same role distribution	cast
PF-14	mistaking fellow tool builders for real end users	cast

PF-21

PF-22

PF-23

PF-24

PF-25

PF-26

PF-1	premature advance: jumping forward over stages	general
PF-2	premature start: insufficient knowledge of vis literature	learn
PF-3	premature commitment: collaboration with wrong people	winnow
PF-4	no real data available (yet)	winnow
PF-5	insufficient time available from potential collaborators	winnow
PF-6	no need for visualization: problem can be automated	winnow
PF-7	researcher expertise does not match domain problem	winnow
PF-8	no need for research: engineering vs. research project	winnow
PF-9	no need for change: existing tools are good enough	winnow
PF-10	no real/important/recurring task	winnow
PF-11	no rapport with collaborators	winnow
PF-12	not identifying front line analyst and gatekeeper before start	cast
PF-13	assuming every project will have the same role distribution	cast
PF-14	mistaking fellow tool builders for real end users	cast
PF-15	ignoring practices that currently work well	discover
PF-16	expecting just talking or fly on wall to work	discover
PF-17	experts focusing on visualization design vs. domain problem	discover
PF-18	learning their problems/language: too little / too much	discover
PF-19	abstraction: too little	design
PF-20	premature design commitment: consideration space too small	design

design

deploy

deploy

deploy

implement

implement

mistaking technique-driven for problem-driven work

usage study not case study: non-real task/data/user

liking necessary but not sufficient for validation

premature end: insufficient deploy time built into schedule

nonrapid prototyping

usability: too little / too much

PF-1	premature advance: jumping forward over stages	general	PF-21	mistaking technique-driven for problem-driven work	design
PF-2	premature start: insufficient knowledge of vis literature	learn	PF-22	nonrapid prototyping	implement
PF-3	premature commitment: collaboration with wrong people	winnow	PF-23	usability: too little / too much	implement
PF-4	no real data available (yet)	winnow	PF-24	premature end: insufficient deploy time built into schedule	deploy
PF-5	insufficient time available from potential collaborators	winnow	PF-25	usage study not case study: non-real task/data/user	deploy
PF-6	no need for visualization: problem can be automated	winnow	PF-26	liking necessary but not sufficient for validation	deploy
PF-7	researcher expertise does not match domain problem	winnow	PF-27	failing to improve guidelines: confirm, refine, reject, propose	reflect
PF-8	no need for research: engineering vs. research project	winnow	PF-28	insufficient writing time built into schedule	write
PF-9	no need for change: existing tools are good enough	winnow	PF-29	no technique contribution \neq good design study	write
PF-10	no real/important/recurring task	winnow	PF-30	too much domain background in paper	write
PF-11	no rapport with collaborators	winnow	PF-31	story told chronologically vs. focus on final results	write
PF-12	not identifying front line analyst and gatekeeper before start	cast	PF-32	premature end: win race vs. practice music for debut	write
PF-13	assuming every project will have the same role distribution	cast			
PF-14	mistaking fellow tool builders for real end users	cast]		
PF-15	ignoring practices that currently work well	discover	1		
PF-16	expecting just talking or fly on wall to work	discover]		
PF-17	experts focusing on visualization design vs. domain problem	discover	1		

discover

design

design

learning their problems/language: too little / too much

premature design commitment: consideration space too small

abstraction: too little

PF-18

PF-19

PF-20

Design studies & user-centered design

- user-centered design: well-known HCl methodology
 - iterative refinement & deployment
 - evaluation through case studies & field studies

Design studies & user-centered design

- user-centered design: well-known HCl methodology
 - iterative refinement & deployment
 - evaluation through case studies & field studies

- what's specific to visualization?
 - discovering task and data abstractions
 - -designing visual encoding & interaction idioms that map to abstractions

Three case studies of problem-driven work

e-commerce

facilities management

biology

Three case studies of problem-driven work

e-commerce

• facilities management

biology

Kim Dextras-Romagnino

Segmentifier

Interactive Refinement of Clickstream Data

http://www.cs.ubc.ca/labs/imager/tr/2019/segmentifier

E-commerce: mobile apps for large companies

Process: Design Study Methodology

- Precondition Phase (5 months): interviews with 12 employees
- Core Phase (11 months): Iterative design and implementation
- Analysis Phase (3 months): Reflect and write

What are the **Data and Task Abstractions** for *Clickstream Data Analysis?*

Clickstream Data

Clickstream Analysis Tasks

Segmentifier Analysis Model

What is Clickstream Data?

Data: Actions

Data: Action Attributes

Data: Action Types

Action Hierarchy

Action Hierarchy

Data: Sequences

Data: Sequences

Data: Client Sequences

Client Sequences: all actions performed by a single user

Data: Session Sequences

Session Sequences: all actions performed by a single user within a defined amount of time (Δ) from each other. Δ is usually 30 min.

Data: Sequence Attributes

Start time En

End time

Duration

Data: Segments

Segment: any set of sequences

Data: Segment Attributes

Real-world Clickstream Data

Real-world Clickstream Data

Real-world Clickstream Data

Scale is huge

Variability is high

Real-world Clickstream Data

Scale is huge

Variability is high

Most work **fails** when applied to real-world data

What are Clickstream Data Analysis Tasks?

Tasks: Segment Behavior

Behavior: set of attribute constraints

Tasks: Segment Behavior

Behavior: set of attribute constraints

- Expected
 Users add to cart before purchasing
- Unexpected
 No purchases on a certain month
- FavorablePurchased
- UnfavorableBounced

Identify: Find some set of sequences that constitutes interesting behavior

Identify: Find some set of sequences that constitutes interesting behavior

Drilldown: Distinguish more specific *behaviors* to further partition a segment previously defined by looser constraints

Identify: Find some set of sequences that constitutes interesting behavior

Drilldown: Distinguish more specific *behaviors* to further partition a segment previously defined by looser constraints

Frequency: Determine how many sequences are in the segment defined by *behavior*

Identify: Find some set of sequences that constitutes interesting behavior

Drilldown: Distinguish more specific *behaviors* to further partition a segment previously defined by looser constraints

Frequency: Determine how many sequences are in the segment defined by *behavior*

Ordering within sequence: Match if one action subsequence occurs before (or after) another action subsequence in a sequence

- Abstraction above task/data level to provide design rationale
- Take a giant, noisy dataset and refine it into small, clean segments for
 - actionable insights
 - downstream analysis
- Bridge the gap between real-world data and other techniques

View

- Gives Insight into underlying data of segment
 - Action Attributes
 - Sequence Attributes
 - Segment Attributes
- Leads to:
 - Insights
 - New ways on how to refine
 - Whether segment should be abandoned
 - Whether segment should be exported

Refine

- Apply operation to create new segments
- Type of Refinements
 - o Filter
 - Partition
 - Transform

- Record all refinement steps automatically
- Keep track of questions asked and hypotheses tested
- Ability to create and view multiple segments from the same segment

Export

- Export refined segments for further downstream analysis, to more specific tools:
 - Pattern mining
 - Clustering

Conclude

Discover actionable insight by viewing segment

Abandon

- By *viewing* the segment, analyst *abandons* if:
 - No actionable insights
 - No further ways to refine
 - Not suitable for *export*

Why Visual Analytics?

- Automation would be nice...
 - Put data in, actionable results appear
- ... but it is not realistic
 - Many possible questions, data-driven interplay between finding answers and generating new questions
- Human-in-the-loop visual data analysis
 - Integrate computing power of machine with intuition of domain experts

Solution

The Segmentifier Interface

Video

Segmentifier Contributions

Thorough characterization of task and data abstraction for clickstream data analysis

Segmentifier Contributions

- Thorough characterization of task and data abstraction for clickstream data analysis
- Segmentifier: novel analytics interface for refining data segments and viewing characteristics before downstream fine-grained analysis

Segmentifier Contributions

- Thorough characterization of task and data abstraction for clickstream data analysis
- Segmentifier: novel analytics interface for refining data segments and viewing characteristics before downstream fine-grained analysis
- Preliminary evidence of utility

Three case studies of problem-driven work

e-commerce

• facilities management

biology

Michael Oppermann

Ocupado

Visualizing Location-Based Counts Over Time Across Buildings

http://www.cs.ubc.ca/labs/imager/tr/2020/ocupado/

Ocupado: Visualizing Location-Based Counts Over Time Across Buildings.

Oppermann and Munzner. Computer Graphics Forum (Proc. EuroVis 2020) 39(3):127-138 2020.

Location-Based Counts

Previous measurement required physical counting or installation of additional hardware.

Previous measurement required physical counting or installation of additional hardware.

Previous visualization attempts were limited in space and time.

Location-Based Counts

- Regular intervals (e.g., every 5 minutes)
- Spatial hierarchy (Zone → Floor → Building → Campus)
- No trajectories or device identifiers are recorded
- Intrinsic privacy advantages

Data

Automated HVAC control

Data

WiFi connections as a proxy for occupancy

WiFi connections as a proxy for occupancy

Interviews with potential stakeholders

Focus Domains

- Space planning
- Building management
- Custodial services
- Classroom management
- Data quality control

Focus Domains

- Space planning
- Building management
- Custodial services
- Classroom management
- Data quality control

Semi-structured discussions and live demos

Confirm assumptions or previous observations.

Do students occupy room x in evenings or on weekends?

Confirm assumptions or previous observations.

Monitor the current/recent utilization rate.

Which rooms are empty/busy?

Confirm assumptions or previous observations.

Monitor the current/recent utilization rate.

Communicate space usage and justify decisions.

Space usage improved after renovation.

Confirm assumptions or previous observations.

Monitor the current/recent utilization rate.

Communicate space usage and justify decisions.

Validate the data (quality control).

Check minimum size of a room that can be captured.

Spatial and Temporal Data Granularities

Visualization Prototypes

Sandbox

Data sketches, static data export

Time

Visualization Prototypes

Sandbox

Data sketches, static data export

- original plan: different interface for each stakeholder
- realization: task & data abstractions match multiple stakeholders
 - if slice by space & time granularity

Spatial and Temporal Data Granularities

Regions of interest

Spatial and Temporal Data Granularities

Regions of interest

Periods of interest

Visualization Prototypes

Sandbox

Data sketches, static data export

Campus Explorer

Live-data stream, cross-building analysis

Building Recent

Building Long-term

Region Compare

Time

Layout	Visual Encoding	Facet	Comparisons
	Sparkline	Juxtaposition	Repeating patterns, trends, outliers (contiguous)

Layou	t Vis	sual Encoding	Facet	Comparisons
	Sp	parkline	Juxtaposition	Repeating patterns, trends, outliers (contiguous)
	В	ox-plot-bars	Juxtaposition	Repeating patterns, trends, outliers (non-contiguous)

Layout	Visual Encoding	Facet	Comparisons
	Sparkline	Juxtaposition	Repeating patterns, trends, outliers (contiguous)
	Box-plot-bars	Juxtaposition	Repeating patterns, trends, outliers (non-contiguous)
	Confidence band line chart	Aggregation	Typical utilization profiles

Layout	Visual Encoding	Facet	Comparisons
	Sparkline	Juxtaposition	Repeating patterns, trends, outliers (contiguous)
	Box-plot-bars	Juxtaposition	Repeating patterns, trends, outliers (non-contiguous)
	Confidence band line chart	Aggregation	Typical utilization profiles
	Superimposed line chart	Superposition	Within-session patterns, outliers

	Layout	Visual Encoding	Facet	Comparisons
Temporal		Sparkline	Juxtaposition	Repeating patterns, trends, outliers (contiguous)
		Box-plot-bars	Juxtaposition	Repeating patterns, trends, outliers (non-contiguous)
		Confidence band line chart	Aggregation	Typical utilization profiles
		Superimposed line chart	Superposition	Within-session patterns, outliers

	Layout	Visual Encoding	Facet	Comparisons	
		Sparkline	Juxtaposition	Repeating patterns, trends, outliers (contiguous)	
Temporal		Box-plot-bars	Juxtaposition	Repeating patterns, trends, outliers (non-contiguous)	
		Confidence band line chart	Aggregation	Typical utilization profiles	
		Superimposed line chart	Superposition	Within-session patterns, outliers	
Spatial		Floor plan with symbols	Superposition	Within local spatial neighborhood	
		Spatial heatmap	Containment (nested)	Across distributed regions	134

Ocupado Interfaces

Ocupado Contributions

- Analysis and abstraction of data and tasks for studying space utilization
- Ocupado, a set of visual decision support tools
- Generalizable design choices for visualizing non-trajectory spatiotemporal data relating to large-scale indoor environments

Michael Oppermann

Data-First Design Studies

http://www.cs.ubc.ca/group/infovis/pubs/2020/data-first/

- What type of data am I working with?
- Are there any data quality challenges?

- What type of data am I working with?
- Are there any data quality challenges?
- What is special about this data?

- What type of data am I working with?
- Are there any data quality challenges?
- What is special about this data?
- Who would benefit from seeing and exploring it?

Multiple potential stakeholders

- Multiple potential stakeholders
- Explain initial data abstractions

- Multiple potential stakeholders
- Explain initial data abstractions
- Learn about unsolved stakeholder needs

How frequent are their data-relevant tasks?

- How frequent are their data-relevant tasks?
- How central are these tasks to the stakeholder's primary mission?

- How frequent are their data-relevant tasks?
- How central are these tasks to the stakeholder's primary mission?
- How many people in the organization deal with these tasks?

Data-first DSM framework

Three case studies of problem-driven work

e-commerce

• facilities management

biology

Zipeng Liu

Shing Hei Zhan

Aggregated Dendrograms

for Visual Comparison Between Many Phylogenetic Trees

http://www.cs.ubc.ca/labs/imager/tr/2019/adview

Aggregated Dendrograms for Visual Comparison Between Many Phylogenetic Trees.

Liu, Zhan, Munzner. IEEE Trans. Visualization and Computer Graphics (TVCG) 26(9):2732-2747, 2019.

Phylogenetic tree

Evolutionary relationships of organisms

Many phylogenetic trees

Interactive visual comparison of multiple trees.

Bremm, Landesberger, Heß, Schreck, Weil, Hamacher.

VAST 2011.

Level of detail (LoD): how much details are visible

Comparing many phylogenetic trees

#Trees: how many trees to compare Hundreds / Many as **Thousands** points thousands at multi-scale? Hundreds Dozens at multi-scale Dozens Few in full Pairs Level of detail (LoD): Single **Simplified** Full how much details are visible topology point structure

Contributions include idiom & algorithm levels

Data and task abstractions for comparison of phylogenetic trees

Contributions include idiom & algorithm levels

- Data and task abstractions for comparison of phylogenetic trees
- A new visual encoding: Aggregated Dendrogram
 - Compact tree representation that focuses on selected subtrees
 - Adapts to available screen space

Contributions include idiom & algorithm levels

- Data and task abstractions for comparison of phylogenetic trees
- A new visual encoding: Aggregated Dendrogram
 - Compact tree representation that focuses on selected subtrees
 - Adapts to available screen space
- A multi-view interactive tool: ADView
 - Covers multiple levels of details for tree comparison

Data & Tasks

- Tree data
- Two crucial tasks

Tree data

Reference tree vs. Tree collection

Topological relationships between subtrees / leaf nodes

Topological relationships between subtrees / leaf nodes

Topological relationships between subtrees / leaf nodes

Topological distance

Leaf node memberships compared to reference tree

Topological relationships between subtrees / leaf nodes

Topological distance

Leaf node memberships compared to reference tree

Topological relationships between subtrees / leaf nodes

Topological distance

Leaf node memberships compared to reference tree

Aggregated Dendrogram (AD)

- Intuition
- Visual design

Intuition

Use glyphs to compress a tree according to user selections

- Focus
 - Selected subtrees

- Focus
 - Selected subtrees

- Focus
 - Selected subtrees
 - Topological relationships between them

- Focus
 - Selected subtrees
 - Topological relationships between them

- Focus
 - Selected subtrees
 - Topological relationships between them
- Context
 - Neighboring subtrees

- Focus
 - Selected subtrees
 - Topological relationships between them
- Context
 - Neighboring subtrees
 - Upstream topology and root

- Focus
 - Selected subtrees
 - Topological relationships between them
- Context
 - Neighboring subtrees
 - Upstream topology and root
 - Missing leaf nodes

Visual design: algorithm adapts to space

- Show more info when space permitted
 - Labels
 - #leaf nodes
 - Neighboring blocks

ADView Interface: Multi-level structure across views

Multi-level structure across views

Interface walkthrough: tree collection main views

Interface walkthrough: tree collection aux. views

Validation with many biologists

- Work closely with a biology PhD student (second author)
- Demos, interviews and discussions
 - 10 biologists at different times throughout project

Validation with many biologists

- Work closely with a biology PhD student (second author)
- Demos, interviews and discussions
 - 10 biologists at different times throughout project
- User study sessions
 - 5 biologists
 - Using their own datasets

Validation with many biologists

- Work closely with a biology PhD student (second author)
- Demos, interviews and discussions
 - 10 biologists at different times throughout project
- User study sessions
 - 5 biologists
 - Using their own datasets
- Biologists confirmed
 - Validity of data and task abstractions
 - Utility of ADView

Problem-driven visualization through design studies

- methodology matters
 - identify abstractions
 - crucial & difficult, iterative process
 - select appropriate idioms
 - or create new ones if necessary

- three examples
 - different domains
 - -different methods

More information

theoretical foundations: book
 (+ tutorial/course lecture slides)

http://www.cs.ubc.ca/~tmm/vadbook

Visualization Analysis and Design.

Munzner.

AK Peters Visualization Series.

CRC Press, 2014.

• this talk

http://www.cs.ubc.ca/~tmm/talks.html#vinci21

