Scalable Visual Comparison of Biological Trees and Sequences

Tamara Munzner University of British Columbia Department of Computer Science

Outline

- Accordion Drawing
 - information visualization technique
- TreeJuxtaposer
 - tree comparison
- SequenceJuxtaposer
 - sequence comparison
- PRISAD
 - generic accordion drawing framework

Accordion Drawing

- · rubber-sheet navigation
 - stretch out part of surface, the rest squishes
 - borders nailed down
 - Focus+Context technique
 - · integrated overview, details
 - old idea
 - [Sarkar et al 93], [Robertson et al 91]
- · guaranteed visibility
 - marks always visible
 - important for scalability
 - new idea
 - [Munzner et al 03]

Guaranteed Visibility

- · marks are always visible
- · easy with small datasets

Guaranteed Visibility Challenges

- · hard with larger datasets
- · reasons a mark could be invisible

Guaranteed Visibility Challenges

- · hard with larger datasets
- · reasons a mark could be invisible
 - outside the window
 - · AD solution: constrained navigation

TJ Contributions

- first interactive tree comparison system
 - automatic structural difference computation
 - guaranteed visibility of marked areas
- · scalable to large datasets
 - -250,000 to 500,000 total nodes
 - all preprocessing subquadratic
 - all realtime rendering sublinear
- scalable to large displays (4000 x 2000)
- · introduced
 - guaranteed visibility, accordion drawing

Previous Work

- · tree comparison
 - RF distance [Robinson and Foulds 81]
 - perfect node matching [Day 85]
 - creation/deletion [Chi and Card 99]
 - -leaves only [Graham and Kennedy 01]

26

Outline

- · Accordion Drawing
 - information visualization technique
- TreeJuxtaposer
 - tree comparison
- SequenceJuxtaposer
 - sequence comparison
- PRISAD
 - generic accordion drawing framework

Genomic Sequences

- · multiple aligned sequences of DNA
- · now commonly browsed with web apps
 - zoom and pan with abrupt jumps
 - previous work
 - Ensembl [Hubbard 02], UCSC Genome Browser [Kent 02], NCBl [Wheeler 02]
- · investigate benefits of accordion drawing
 - showing focus areas in context
 - smooth transitions between states
 - guaranteed visibility for globally visible landmarks

31

SequenceJuxtaposer

- · comparing multiple aligned gene sequences
- · provides searching, difference calculation
- [video]
 - video/software downloadable from http://olduvai.sf.net/tj

32

Searching

- · search for motifs
 - protein/codon search
 - regular expressions supported
- · results marked with guaranteed visibility

Differences

- explore differences between aligned pairs
 - slider controls difference threshold in realtime
- · results marked with guaranteed visibility

SJ Contributions

- · fluid tree comparison system
 - showing multiple focus areas in context
 - guaranteed visibility of marked areas
 - thresholded differences, search results
- scalable to large datasets
 - -2M nucleotides
 - all realtime rendering sublinear

Outline

- Accordion Drawing
 - information visualization technique
- TreeJuxtaposer
 - tree comparison
- SequenceJuxtaposer
 - sequence comparison
- PRISAD
 - generic accordion drawing framework

36

Goals of PRISAD

- · generic AD infrastructure
 - tree and sequence applications
 - PRITree is TreeJuxtaposer using PRISAD
 - PRISeq is SequenceJuxtaposer using PRISAD
- efficiency
 - faster rendering: minimize overdrawing
 - smaller memory footprint
- · correctness
 - rendering with no gaps: eliminate overculling

37

Split line hierarchy • data structure supports navigation, picking, drawing • two interpretations - linear ordering A B C D E F - hierarchical subdivision

Drawing Single Range

- each enqueued object range drawn according to application geometry
 - selection for trees
 - aggregation for sequences

- select suitable leaf in each range
- · draw path from leaf to the root
 - -ascent-based tree drawing
 - -efficiency: minimize overdrawing
 - only draw one path per range

PRISAD Performance • PRITree vs. TreeJuxtaposer (TJ) • synthetic and real datasets - complete binary trees • lowest branching factor • regular structure - star trees • highest possible branching factor

Performance Comparison

- · PRITree vs. TreeJuxtaposer
 - detailed benchmarks against identical TJ functionality
 - 5x faster, 8x smaller footprint
 - · handles over 4M node trees
- PRISeq vs. SequenceJuxtaposer
 - -15x faster rendering, 20x smaller memory size
 - -44 species * 17K nucleotides = 770K items
 - -6400 species * 6400 nucleotides = 40M items

6

Future Work

- · future work
 - editing and annotating datasets
 - PRISAD support for application specific actions
 - · logging, replay, undo, other user actions
 - develop process or template for building applications

62

PRISAD Contributions

- infrastructure for efficient, correct, and generic accordion drawing
- · efficient and correct rendering
 - screen-space partitioning tightly bounds overdrawing and eliminates overculling
- first generic AD infrastructure
 - PRITree renders 5x faster than TJ
 - PRISeq renders 20x larger datasets than SJ

63

Joint Work

- TreeJuxtaposer
 - François Guimbretière, Serdar Taşiran, Li Zhang, Yunhong Zhou
 - SIGGRAPH 2003
- SequenceJuxtaposer
 - James Slack, Kristian Hildebrand, Katherine St.John
 - German Conference on Bioinformatics 2004
- PRISAD
 - James Slack, Kristian Hildebrand
 - IEEE InfoVis Symposium 2005

64

Open Source

- software freely available from http://olduvai.sourceforge.net
 - SequenceJuxtaposer olduvai.sf.net/sj
 - TreeJuxtaposer olduvai.sf.net/tj
 - requires Java and OpenGL
 - GL4Java bindings now, JOGL version coming soon
- papers, talks, videos also from http://www.cs.ubc.ca/~tmm