Lecture 3, InfoVis MiniCourse

Navigation/Zooming, Focus+Context, Graphs/Trees, Scalability, Task-Centered Design

LaBRI, University of Bordeaux
18 June 2004

Tamara Munzner

Mini-Course Outline
- Perception
- Frameworks
- Color
- Space/Order
- Depth/Occlusion
- High Dimensionality
- Interaction
- Navigation/Zooming
- Focus+Context
- Graphs/Trees
- Scalability
- Task-Centered Design

Spatial Navigation
- real navigation only partially understood
 - compared to low-level perception, JNDS
 - 3D vs. 2D: we don’t fly, we walk!

- spatial memory / environmental cognition
 - city: landmark/path/whole
 - [The Image of the City, Kevin Lynch, MIT Press 1960]

- synthetic vs. real displays
 - even perception not always the same!

 Overestimation of heights in virtual reality is influenced more by perceived
distal size than by the 2-D versus 3-D dimensionality of the display.
Ekman and Poulson, Perception, 11, 103-112, 2002

Pad++
- “infinitely” zoomable user interface (ZUI)

Space-Scale Diagrams
- reasoning about navigation and trajectories

[Space-Scale Diagrams: Understanding Multiscale Interfaces
George Furnas and Ben Bederson. Proc. SIGCHI’95,

Viewing Window

1D Version

Pan–Zoom Trajectories

Joint Pan–Zoom Problem

Shortest Path

Shortest Path, Details
Speed-Dependent Automatic Zooming

- amount depends on how far to pan

[demo]
[www.ui.is.s.u-tokyo.ac.jp/~takeo/java/autozoom/autozoom.htm]
[video]
[www.ui.is.s.u-tokyo.ac.jp/~takeo/video/autozoom.mov]

Smooth and Efficient Zooming

uw space: u = pan, w = zoom
- horiz axis: cross-section through objects
- point = camera at height w above object
- path = camera path

Optimal Paths Through Space

at each step, cross same number of ellipses
- cross minimal number of ellipses total

Multiscale Display

What's This?

Fisheye Focus+Context View!

leads to next topic...
More Reading

Pad++: A Zooming Graphical Interface for Exploring Alternate Interface Physics
Bederson and Hedin, Proc UIST ’94

Space-Scale Diagrams: Understanding Multiscale Interfaces
George Furgus and Ben Bederson, Proc SIGCHI ’95

Speed-Dependent Automatic Zooming for Browsing Large Documents
http://www-us painting.ac.jp/~takesh/papers/uit9000.pdf

Smooth and Efficient Zooming and Panning.

Mini-Course Outline

Perception
Frameworks
Color
Space/Order
Depth/Occlusion
High Dimensionality
Interaction
Navigation/Zooming
Focus+Context
Graphs/Trees
Scalability
Task-Centered Design

Intuition

move part of surface closer to eye

stretchable rubber sheet
borders tacked down

merge overview and detail into combined view

[1 Review and Taxonomy of Distortion-Oriented Presentation Techniques.

Bifocal

transformation magnification

[1 Review and Taxonomy of Distortion-Oriented Presentation Techniques]

Polyfocal: Continuous Mag

transformation magnification

[1 Review and Taxonomy of Distortion-Oriented Presentation Techniques]
Fisheye Views: Continuous Mag

Transformation magnification

1D 2D rect polar norm polar

[A Review and Taxonomy of Distortion-Oriented Presentation Techniques]

Multiple Foci

Same params diffr params

Polyfocal magnification function dips allow this

[Nonlinear Magnification Fields, Alan Keahey, Proc InfoVis 1997]

[Nonlinear Magnification Fields, Alan Keahey, Proc InfoVis 1997]

Nonlinear Magnification Functions

Transformation
- distortion
- magnification (derivative of transformation)

Directionality
- easy: compute transformation given magnification
- hard: compute magnification given transformation

New mathematical framework
- approximate integration, iterative refinement
- minimize “error mesh”

[Nonlinear Magnification Fields, Alan Keahey, Proc InfoVis 1997]

Expressiveness

Magnification is more intuitive control
- allow expressiveness, data-driven expansion

[Nonlinear Magnification Fields, Alan Keahey, Proc InfoVis 1997]

2D Hyperbolic Trees

Fisheye effect from hyperbolic geometry

[The Hyperbolic Browser: A Focus + Context Technique for Visualizing Large Hierarchies, John]

3D Hyperbolic Graphs: H3

3D hyperbolic geometry, tree as backbone

[Video]

[graphics.stanford.edu/videos/h3]

Layout

Problem
- General problem is NP-hard

Solution
- Tractable spanning tree backbone
- Match mental model "quasi-hierarchical"
- Use domain knowledge to construct select parent from incoming links
- Non-tree links on demand

Avoiding disorientation

Problem
- Maintain user orientation when showing detail
- Hard for big datasets
- Exponential in depth: node count, space needed

Overview and detail

Two windows: Add linked overview
- Cognitive load to correlate

Solution
- Merge overview, detail
- "Focus+context"

Progressive rendering

Want fast update during user interaction
- Fill in details when user is idle

Guaranteed frame rate algorithm

H3 discussion: scalability

focus+context layout
- cognitive limit: if graph diameter >> visible area

[http://www.caida.org/tools/measurement/skitter/vitz/hypvis/mrdhypog.t.hires.png]

TreeJuxtaposer

keep root, landmark locations visible
- move from local F+C to global F+C
- rubber sheet with borders tacked down
- guaranteed visibility
- (demo)

More Reading

http://www.ai.mcc.ai.edu/people/yuminy lavoro/leung94.pdf
Nonlinear Magnification Fields, Alan Kehley, Proc InfVis 1997
The Hyperbolic Browser: A Focus + Context Technique for Visualizing Large Hierarchies,
http://citeseer.ist.psu.edu/lamping95focusontext.html
H3: Laying Out Large Directed Graphs in 3D Hyperbolic Space.
http://www.cs.ubc.ca/~tmm/papers/tj

Mini-Course Outline

Perception
Frameworks
Color
Space/Order
Depth/Occlusion
High Dimensionality
Interaction
Navigation/Zooming
Focus+Context
Graphs/Trees
Scalability
Task–Centered Design

Hermann survey

true survey, won't try to summarize here

nice abstraction work by authors
- Strahler skeletonization
- ghosting, hiding, grouping

Animated Radial Layouts

static radial layouts: known algorithm

Dynamic Graph Layout

- little previous work
 - DynaDAG [North, Graph Drawing 95]
 - DA-TU [Huang, Graph Drawing 98]

- minimize visual changes
- stay true to current dataset structure

[video]

SpaceTree

- focus+context tree
 - animated transitions

- semantic zooming

[demo]

Animation

- polar interpolation

- maintain neighbor order

[http://ballando.sims.berkeley.edu/papers/infvis01.html]

Treemaps

- containment not connection

- difficulties reading

Cushion Treemaps

- show structure with shading
 - scale parameter controls global vs. local

Cushion Treemaps

- application
 - SequoiaView, Windows app
 - hard drive usage
 - http://www.win.tue.nl/sequoia/

- treemap strength
 - showing an attribute
Graphs: Matrix vs. Node–Link

- Large software project, implementation vs. spec
- Link matrix vs. node network

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Force-directed</th>
<th>Layered subset</th>
</tr>
</thead>
</table>

Matrices

- Uniform, recursive, stable
- Subdivide by total component count, visible subcomponent count

Zooming

- Abstraction levels
- Linear interpolation plus crossfade trajectories: will read van Wijk 03 in week 6

Additional Encoding

- Color: call allowed by spec
- Color: local region closest red
- Transparency: call density

- Histograms: size distribution

Tasks Successfully Supported

- Visual categorization
 - E.g. libraries with mostly incoming calls
- Previous summary shown to be incomplete
- Spotting unwanted calls
- Determining component dependencies

Multiscale Small–World Graphs

More Reading

Graph Visualization in Information Visualization: a Survey.
http://citeseer.nj.nec.com/herman4graph.html

Animated Exploration of Graphs with Radial Layout.
http://bolland.cs.umass.edu/projects/infovis01.htm

http://www.irmm.fr/~fjoanicot/Publication/ACJ03.pdf

Mini-Course Outline

Perception
Frameworks
Color
Space/Order
Depth/Occlusion
High Dimensionality
Interaction
Navigation/Zooming
Focus+Context
Graphs/Trees
Scalability
Task-Centered Design

Million Items Viz

scaling up treemaps
1000x1200 pixels, million items
* atomic object displayed as distinguishable contiguous area using one viz technique

[Interactive Information Visualization of a Million Items]
Jean-Daniel Fevotte and Catherine Plaisant, Proc InfoVis 2002

Rendering Techniques

shading not outline
* visually distinguish items with less pixels

show overlap
* calculate with stencil buffer

transparency, stereo
* only for interactive/transient exploring

[Interactive Information Visualization of a Million Items]
Jean-Daniel Fevotte and Catherine Plaisant, Proc InfoVis 2002

Interaction Techniques

flipping/blingking
dynamic queries
* assign depth
* change Z-buffer with slider
excentric labels

animated transitions
* stabilized layouts
* separate translation, scaling
* switching representations

[no video]

[Interactive Information Visualization of a]
Jean-Daniel Fevotte and Catherine Plaisant, Proc InfoVis 2002

Incremental Dynamic Queries

dynamic queries: user-controlled slider

[no video]
Data Structures

setup
 · data set
selection
 · picking particular range slider
querying
 · moving the slider
maximum hit set
 · state of other sliders
 · extreme range of this slider
 · precompute bins in the range so slider movement fast

Critique

good: complexity analysis
bad: far too little detail to replicate
 · nothing on incremental rendering
 · insufficient on computation data structures

More Reading

Interactive Information Visualization of a Million Items
http://www.cs.umass.edu/itcal/cgi-bin/hcl/n-pf?number=2002-01

Design and Evaluation of Incremental Data Structures and Algorithms
http://citeserv.ri.in.tugraz.at/servlet/Research.html

Mini-Course Outline

Perception
Frameworks
Color
Space/Order
Depth/Occlusion
High Dimensionality
Interaction
Navigation/Zooming
Focus+Context
Graphs/Trees
Scalability
Task-Centered Design

Task Analysis

what is the user’s general job?
how might infovis help – specific tasks?
do humans need to keep model of complex data inside head?
 · if small dataset, maybe don’t need infovis
 · if humans don’t need to directly understand, automate instead of visualize!
working directly with users very helpful
 · driving problems keeps you honest
 · they know tasks
 · you know design possibilities

Methodology

iterative refinement
 · user is not always right
 · initial discussion is start, not end
scenario
 · exactly how would tool be used
 · detailed examples
mockup
 · sketch on paper what interface would look like
 · much less work than programming
 · can try and discuss several alternatives
cognitive walkthrough
 · think about places where users might make mistakes
Evaluation

adoption
 - is it used?
anecdotal
 - did somebody discover something?
formal user studies
 - large groups for statistical significance
 - show it was XX% faster or YY% fewer errors
 - cannot design good experiment without training!
collaborate with psychologist, HCI
informal usability evaluations
 - generally much faster

justify design given conceptual framework
 - visual encoding given task and data

More Reading

Task-Centered User Interface Design
Clayton Lewis and John Rieman

entire short book available online as shareware
http://hcilib.org/tcuid/