Mini-Course Outline

Perception
Frameworks
Color
Space/Order
Depth/Occlusion
High Dimensionality
Interaction
Navigation/Zooming
Focus+Context
Graphs/Trees
Scalability
Task-Centered Design
Finding the Right Order: Trellis

alphabetical

<table>
<thead>
<tr>
<th>Wisconsin No. 39</th>
<th>Fox</th>
<th>St Croix</th>
<th>Mississippi River</th>
<th>Minnesota</th>
<th>Wisconsin</th>
<th>1891</th>
<th>1892</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

main-effects: sort by median value

<table>
<thead>
<tr>
<th>Wisconsin No. 39</th>
<th>Fox</th>
<th>St Croix</th>
<th>Mississippi River</th>
<th>Minnesota</th>
<th>Wisconsin</th>
<th>1891</th>
<th>1892</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Finding the Right Order: Table Lens

select column to sort
· user explores

[demo: www.tablelens.com]
Finding the Right Order: Rivet

Finding the Right Order: VisDB

each pixel represents database entry
 · color by query relevance
what order to sort?

spiral

2D

dimension j

dimension i

[www.dbs.informatik.uni-muenchen.de/db/project/papers/visdb.ps]
VisDB Windows

group dimensions

separate dimensions

one data item approximately fulfilling the query

one data item fulfilling the query
VisDB Results: Separate Dimensions

spiral

2D

[www.dbs.informatik.uni-muenchen.de/dbs/projekt/papers/visdb.ps]
VisDB Results: Grouped Dimensions
Derived Spaces: Slope

narrative of space and time
Marey train schedule, 1885
- horizontal line length: stop length
- slope: speed
- intersection: time/place of crossing

Slope: Banking to 45 Degrees

what size should a line graph be?

perceptual principle: most accurate slope judgement near 45 degrees

pick aspect ratio (height/width) to maximize amount of 45 degree slope
Space vs. Time: Showing Change

 literal
<------------------------->
| time for time |
| abstract |
| space for time |

animation: show time using temporal change

- show process
- compare two things by blinking

bad

- directly compare between many things
 intermediate frames "overload mental buffer"

[www.geom.uiuc.edu/docs/outreach/oi/evert.mpg] [www.astroshow.com/ccdpho/pluto.gif]
Space vs. Time: Showing Change

literal abstract
time for time space for time

small multiples: show time using space
 · overview: show each time step in array
 · compare: side-by-side easier than temporal
 external cognition instead of internal memory
 · general technique, not just for temporal changes

[Edward Tufte. The Visual Display of Quantitative Information, p 172]
More Reading

The Visual Design and Control of Trellis Display
R. A. Becker, W. S. Cleveland, and M. J. Shyu
http://cm.bell-labs.com/stat/doc/trellis.jcgs.col.ps

Chapter 4: Small Multiples, Chapter 6: Narratives of Space and Time

VisDB: Database Exploration using Multidimensional Visualization,
http://www.dbs.informatik.uni-muenchen.de/dbs/projekt/papers/visdb.ps

The Table Lens: Merging Graphical and Symbolic Representations in an Interactive Focus +
Context Visualization for Tabular Information
http://citeseer.ist.psu.edu/545353.html

Performance Analysis and Visualization of Parallel Systems Using SimOS and Rivet: A Case
Study. Robert Bosch, Chris Stolte, Gordon Stoll, Mendel Rosenblum, and Pat Hanrahan. In
http://graphics.stanford.edu/papers/rivet_argus/
Mini-Course Outline

Perception
Frameworks
Color
Space/Order
Depth/Occlusion
High Dimensionality
Interaction
Navigation/Zooming
Focus+Context
Graphs/Trees
Scalability
Task-Centered Design
Layering And Separation
Visual Clutter
subtler background than foreground

[Tufte, Envisioning Information, Chap 3]
Visual Layering For Graphs

- edge crossing problem
- true attachments
- layers to avoid perception
- vs. spatial position

[Muñoz et al, Constellation, graphics.stanford.edu/papers/const]
3D Time-series Data

3D extrusion pretty but not useful
- daily, weekly patterns hard to see
- occlusion hides, perspective interferes
Time-series Data Analysis

data: N pairs of (value, time)
 - N large: 50K

tasks
 - find standard day patterns
 - find how patterns distributed over year, week, season
 - find outliers from standard daily patterns
 - want overview first, then detail on demand

possibilities
 - predictive mathematical models
 details lost, multiscale not addressed
 - scale-space approaches (wavelet, fourier, fractal)
 hard to interpret, known scales lost
 - 3D mountain: x hours, y value, z days
 occlusion hides, perspective interferes
Hierarchical Clustering

start with all M day patterns
 - compute mutual differences, merge most similar
 - continue up to 1 root cluster
result: binary hierarchy of clusters
 - choice of distance metrics

dendrogram display common
 - shows structure of hierarchy
 - does not solve pattern finding problem!
Link Clusters and Calendar

2D linked clusters—calendars shows patterns

- number of employees:
- office hours, fridays in/and summer, school break
- weekend/holidays, post-holiday, santa claus

[van Wijk and van Selow, Cluster and Calendar based Visualization of Time Series Data, InfoVis99, Figure 4, citeseer.ist.psu.edu/vanwijk99cluster.html]
Power Consumption

[van Wijk and van Selow, Cluster and Calendar based Visualization of Time Series Data, InfoVis99, Figure 5, citeeer.nj.nec.com/vanwijk99cluster.html]
van Wijk Lessons

derived space: clusters
visual representation of time: calendar
 • linked display
 • interactive exploration

clear task analysis guided choices
 • reject standard 3D extrusion
 • reject standard dendrogram

critique
 • pro: great design study, problem solved!
 • con: some chosen colors not discriminable
3DPS
1: 2D displace+magnify
2: 3D displace+magnify
3: 2D displace only
4: 3D displace only
5: visual access distortion

Extending Distortion Viewing Techniques from 2D to 3D Data
Carpendale et al 1997
Visual Access Distortion

naive 2D -> 3D extension yields occlusion
 · same problem as van Wijk

graph–based solution
 · move geometry according to viewpoint
 · magnify focus only
 · introduce curves into formerly straight lines

focus + context issues discussed later

[pages.cpsc.ucalgary.ca/~sheelagh/personal/pubs/cga97.pdf]
Results

single, multiple foci

[pages.cpsc.ucalgary.ca/~sheelagh/personal/pubs/cga97.pdf]
Results

randomly positioned nodes instead of grid
 · closer to real dataset

[pages.cpsc.ucalgary.ca/~sheelagh/personal/pubs/cga97.pdf]
Critique

sophisticated way to navigate 3D graphs

nice technique paper
 · not a design study

interesting discussion I'd like to see
 · more analysis of why 3D necessary
 cites Ware 3x improvement
 · occlusion workaround vs. occlusion avoidance

never shown on real data
 · hard to draw conclusions from toy datasets
EdgeLens

interactive control over edge occlusion

Figure 5a: Bubble approach
Figure 5b: Spline approach

user study: spline better than bubble

[EdgeLens: An Interactive Method for Managing Edge Congestion in Graphs
EdgeLens Final Algorithm

decide which edges affected
calculate displacements
calculate spline control points
draw curves
EdgeLens Techniques

transparency, color
EdgeLens Results

critique
 · very nice technique
 · compelling need
 · shown on real data
Cheops

compact

show paths through tree

extreme occlusion deliberately

browsing/exploration, not topological analysis

[Cheops, Beaudoin/Parent/Vroomen, www.istop.com/~maparent/paper.html]
Cheops Critique

pro
 · tiny footprint
 suitable when main user focus is other task
 · interaction techniques investigated
 informal usability

con
 · relatively hard to understand
 · singular nodes very salient, but not so important
More Reading

Mini-Course Outline

Perception
Frameworks
Color
Space/Order
Depth/Occlusion
High Dimensionality
Interaction
Navigation/Zooming
Focus+Context
Graphs/Trees
Scalability
Task-Centered Design
Parallel Coordinates

only 2 orthogonal axes in the plane instead, use parallel axes!

point-line duality

[Parallel Coordinates: A Tool for Visualizing Multi-Dimensional Geometry.](https://www.stat.berkeley.edu/~berkman/research/pc.html)
Parallel Coords: Axis Ordering

geometric interpretations
 - hyperplane, hypersphere: points have intrinsic order

infovis
 - no intrinsic order, what to do?
 - indeterminate/arbitrary order
 weakness of many techniques
 downside: human–powered search
 upside: powerful interaction technique
 - most implementations
 user can interactively swap axes

Automated Multidimensional Detective
 - [Inselberg 99]
 - machine learning approach
Hierarchical Parallel Coords: LOD

[Hierarchical Parallel Coordinates for Visualizing Large Multivariate Data Sets. Eua, Ward, and Bundensteiner. IEEE Vis '99, davis.wpi.edu/~xmdv/docs/vis99_HPC.pdf]
Hierarchical Clustering

proximity-based coloring

[Hierarchical Parallel Coordinates for Visualizing Large Multivariate Data Sets
Fua, Ward, and Rundensteiner. IEEE Vis '99, davis.wpi.edu/~xmdv/docs/vis99_HPC.pdf]
Dimensionality Reduction

mapping
- Q high dims
- P low dims (2 or 3)
- n points
- map Q→P
- minimize error of low-dim distances wrt high-dim dist

distance measures
- pairwise distance matrix between points
- metric between points in space

methods
- MDS (multidimensional scaling)
- LLE (locally linear embedding)
- IsoMap, charting
- PCA, SOM

complexity
- naive $O(n^3)$, many $O(n^2)$,
- best $O(n \sqrt{n})$
True Dimensionality: Linear

how many dimensions is enough? > 2 or 3?
 · knee in error curve
example: measured materials from graphics
linear PCA: 25
 · can get physically impossible intermediate points

True Dimensionality: Nonlinear

nonlinear MDS: 10–15
 - all intermediate points possible
categorizable by people
 - red, green, blue, specular, diffuse, glossy, metallic,
 - plastic-y, roughness, rubbery, greasiness, dustiness...

[A Data–Driven Reflectance Model, SIGGRAPH 2003, W Matusik, H. Pfister
W. Freeman, L. McMillan]
Themescapes/Galaxies

MDS output: beyond just drawing points
 - galaxies: aggregation
 - themescapes: terrain/landscapes
Cluster Stability

display
 · also terrain metaphor

underlying computation
 · energy minimization (springs) vs. MDS
 · weighted edges

do same clusters form with different random start points?

"ordination"
 · spatial layout of graph nodes
Approach

- normalize within each column

- similarity metric
 - discussion: Pearson's correlation coefficient

- threshold value for marking as similar
 - discussion: finding critical value
Graph Layout

criteria
 · distance in layout matching graph-theoretic distance
 · vertices one hop away close
 · vertices many hops away far
 · insensitive to random starting positions
 · major problem with previous work!
 · tractable computation

force-directed placement
 · discussion: energy minimization
 · others: gradient descent, etc
 · discussion: termination criteria
Barrier Jumping

same idea as simulated annealing
 · but compute directly
 · just ignore repulsion for fraction of vertices
solves start position sensitivity problem
Results

efficiency
 · naive approach: $O(V^2)$
 · approximate density field: $O(V)$

good stability
 · rotation/reflection can occur

different random start adding noise

Control

Original Noise std .001 Noise std .010

Noise std .050 Noise std .100
Critique

real data
 · suggest check against subsequent publication!

give criteria, then discuss why solution fits

visual + numerical results
 · convincing images plus benchmark graphs

detailed discussion of alternatives at each stage

specific prescriptive advice in conclusion
More Reading

Mini-Course Outline

- Perception
- Frameworks
- Color
- Space/Order
- Depth/Occlusion
- High Dimensionality
- Interaction
- Navigation/Zooming
- Focus+Context
- Graphs/Trees
- Scalability
- Task-Centered Design
Dynamic Queries

[Visual Information Seeking: Tight Coupling of Dynamic Query Filters with Starfield Displays. Ahlberg and Shneiderman, Proc SIGCHI '94. citeseer.ist.psu.edu/ahlberg94visual.html]
Dynamic Queries

Ahilberg & Shneiderman, Color plate 2. Categories have been selected, the displayed is zoomed

[Visual Information Seeking: Tight Coupling of Dynamic Query Filters with Starfield Displays. Ahilberg and Shneiderman, Proc SIGCHI '94, citeseer.ist.psu.edu/ahilberg94visual.html]
Toolglass and Magic Lens

- see-through
- two-handed

symmetry glass

(a) (b) (c)

curvature lens

[citeseer.nj.nec.com/bier93toolglass.html]
Linked Views

linked highlighting/brushing/
- extremely powerful technique

- Brushing Scatterplots, Becker and Cleveland, Technometrics 1987 vol 29, pp 127–142

coordinated views

- linked navigation

- CMV: International Conference on Coordinated & Multiple Views in Exploratory Visualization

example: Exploratory Data Visualizer

Highlighting (Focusing)

Focus user attention on a subset of the data within one graph (from Wills 95)
Link different types of graphs: Scatterplots and histograms and bars
(from Wills 95)

[www.sims.berkeley.edu/courses/is247/s02/lectures/Lecture3.ppt]
Baseball data: Scatterplots and histograms and bars (from Wills 95)

- How long in majors
- Select high salaries
- Avg assists vs avg putouts (fielding ability)
- Avg career HRs vs avg career hits (batting ability)
- Distribution of positions played

[www.sims.berkeley.edu/courses/is247/s02/lectures/Lecture3.ppt]
Linking types of assist behavior to position played (from Wills 95)
More Reading

Toolglass and magic lenses: the see-through interface

Brushing Scatterplots, Becker and Cleveland