Lecture 1, InfoVis MiniCourse

Perception, Frameworks, Color

LaBRI, University of Bordeaux

14 June 2004

Tamara Munzner

Information visualization

interactive visual representation of abstract data

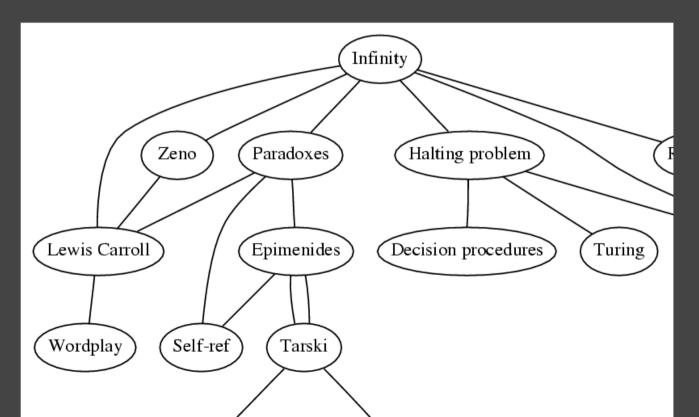
· help human perform some task more effectively

external representation

· reduces load on working memory

External representation example

book topic relationships


· [Godel, Escher, Bach. Hofstadter 1979]

Paradoxes – Lewis Carroll Turing – Halting problem Halting problem - Infinity Paradoxes - Infinity Infinity - Lewis Carroll Infinity - Unpredictably long searches Infinity - Recursion Infinity – Zeno Infinity - Paradoxes Lewis Carroll - Zeno Lewis Carroll - Wordplay

```
Halting problem - Decision
procedures
BlooP and FlooP - AI
Halting problem - Unpredictably
long searches
BlooP and FlooP - Unpredictably
long searches
BlooP and FlooP - Recursion
Tarski - Truth vs. provability
Tarski – Epimenides
Tarski - Undecidability
Paradoxes - Self-ref
```

External representation example

offload cognition to visual systems read off answer

Mini-Course Outline

Perception Frameworks Color Space/Order Depth/Occlusion High Dimensionality Interaction Navigation/Zooming Focus+Context Graphs/Trees **Scalability** Task-Centered Design

Human Perception

sensors/transducers

· psychophysics: determine characteristics

relative judgements: strong absolute judgements: weak

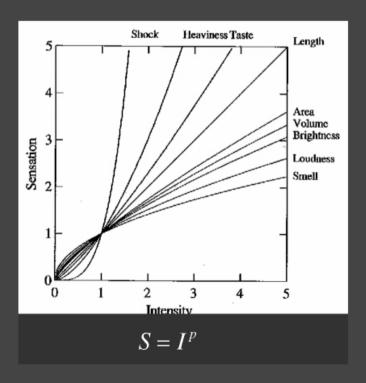
· continuing theme

different optimizations than most machines

- eyes are not cameras
- perceptual dimensions not nD array
- · (brains are not hard disks)

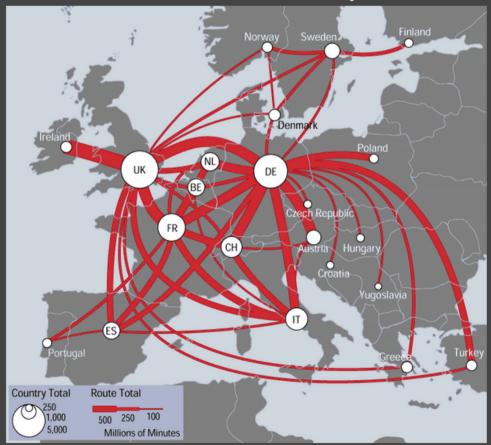
Psychophysical Measurement

JND: just noticeable difference


increment where human detects change

average to create "subjective" scale

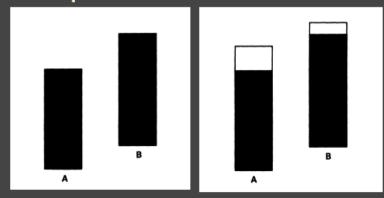
Nonlinear Perception of Magnitudes


sensory modalities not equally discriminable

· Stevens power law

Dimensional Dynamic Range

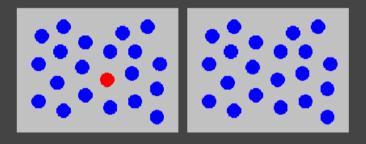
linewidth: limited discriminability


Weber's Law

ratio of increment threshold to background intensity is constant

· relative judgements within modality

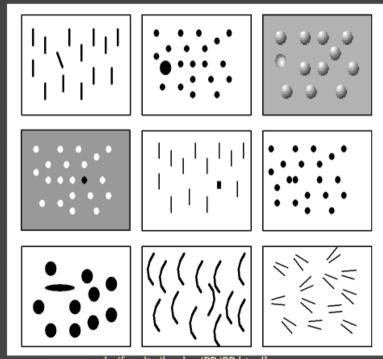
$$\frac{\Delta I}{I} = K$$


Cleveland example: frame increases accuracy

Preattentive Visual Dimensions

color (hue) alone: preattentive

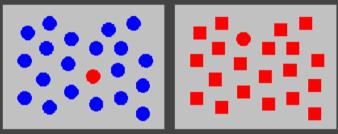
- · attentional system not invoked
- · search speed independent of distractor count

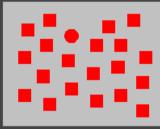


[Chris Healey, Preattentive Processing, www.csc.ncsu.edu/faculty/healey/PP/PP.html]

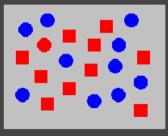
Preattentive Visual Dimensions

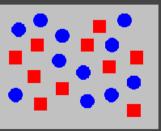
many preattentive dimensions of visual modality

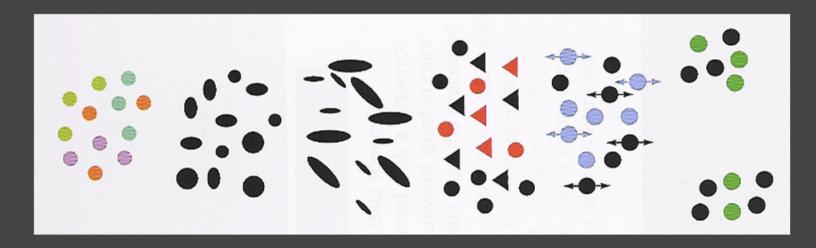

- · hue
- · shape
- texture
- · length
- · width
- · size
- orientation
- curvature
- intersection
- intensity
- flicker
- direction of motion
- stereoscopic depth
- · lighting direction



[Chris Healey, Preattentive Processing, www.csc.ncsu.edu/faculty/healey/PP/PP.html]


Preattentive Visual Dimensions


color alone: preattentive shape alone: preattentive


combined hue and shape: multimodal

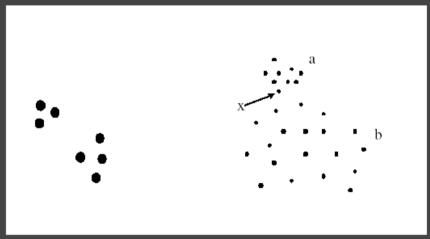
- requires attention
- search speed linear with distractor count

Integral vs. Separable Dimensions

red-green yellow-blue

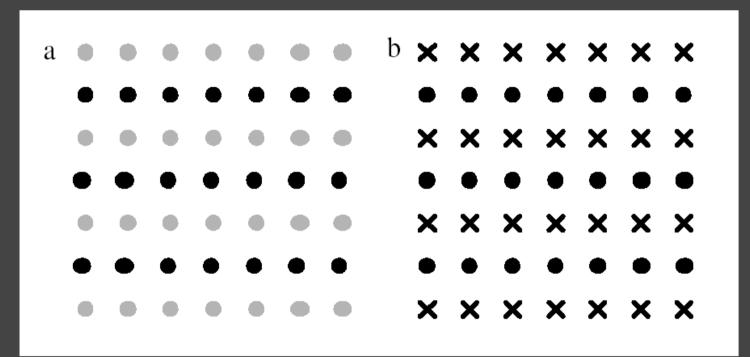
x-size y-size size orientation color shape color motion color location

Gestalt Laws

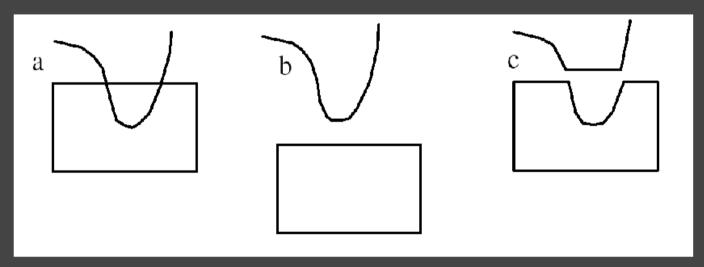

principles of pattern perception

- · "gestalt": German for "pattern"
- original proposed mechanisms wrong
- · rules themselves still useful
- · "Pragnatz": simplest possibility wins

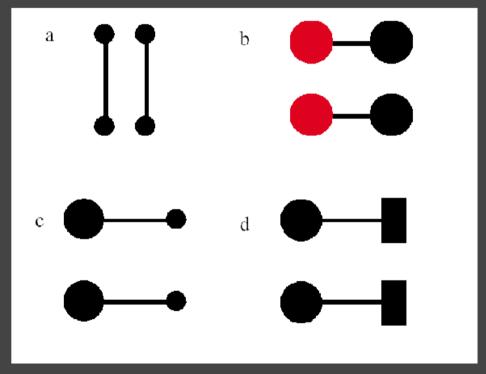
principles


- proximity
- · similarity
- continuity/connectedness/good continuation
- · closure
- symmetry
- common fate (things moving together)
- relative sizes

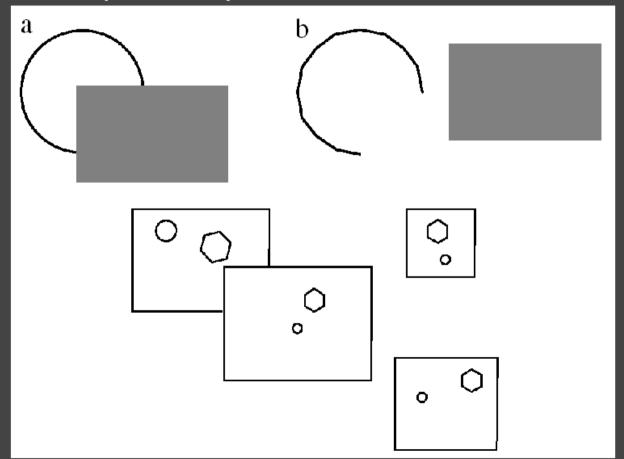
Proximity


[Colin Ware, Information Visualization: Perception for Design. Morgan Kaufmann 1999.]

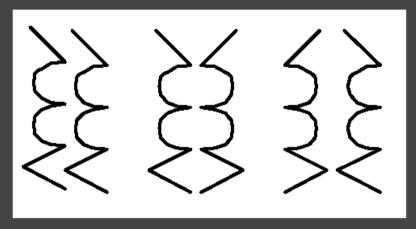
Similarity


Continuity

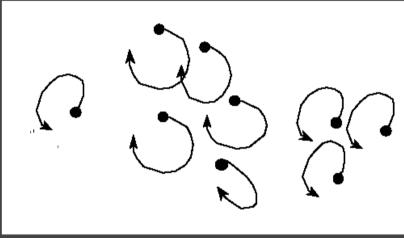
smooth not abrupt change overrules proximity


Connectedness

can overrule size, shape

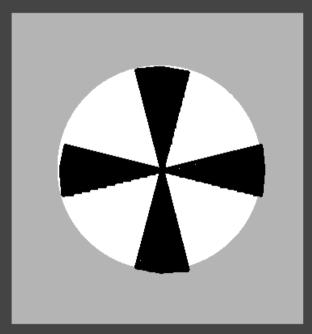

Closure

overrules proximity



Symmetry

emphasizes relationships


Common Fate

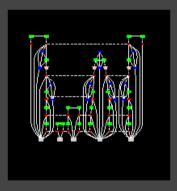
[Colin Ware, Information Visualization: Perception for Design. Morgan Kaufmann 1999.]

Relative Size

smaller components perceived as objects

Graph Drawing Tension

node placement


close

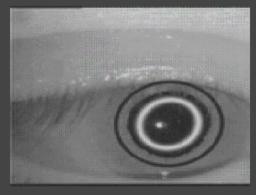
· proximity

far

- visual popout of long edge either
 - connectedness

tradeoffs abound in infovis!

[www.research.att.com/sw/tools/graphviz]


Eyes

fovea

- · thumbnail at arm's length
- · small high resolution area

saccades [video]

- · high-resolution samples
- brain makes collage
- · vision perceived as entire simultaneous field
- · fixation points: dwell 200-600ms
- · moving: 20–100ms

Ears

perceived as temporal stream

- · but also samples over time
- hard to filter out when not important visual vs auditory attention

implications

- · harder to create overview?
- hard to use as separable dimension?

'sonification' still very niche area

alternative: supporting sound enhances immersion

More Reading

Information Visualization: Perception for Design. Colin Ware. Morgan Kaufmann 1999. Chapter 5: Visual Attention and Information That Pops Out

Information Visualization: Perception for Design. Colin Ware. Morgan Kaufmann 1999. Chapter 6: Static and Moving Patterns

The Psychophysics of Sensory Function, S. S. Stevens, Sensory Communication, MIT Press, 1961, pp 1–33.

http://www.cs.ubc.ca/~tmm/courses/cpsc533c-03-spr/readings/ss.pdf

Graphical Perception: Theory, Experimentation and the Application to the Development of Graphical Models William S. Cleveland, Robert McGill, J. Am. Stat. Assoc. 79:387, pp. 531–554, 1984.

http://www.jstor.org/cgi-bin/jstor/printpage/01621459/di985961/98p1201a/0.pdf?userID=8e670917@ubc.ca/01cc99333c0050103e7f4&backcontext=citation&config=jstor&dowhat=Acrobat&0.pdf

Perception in Visualization. Christopher G. Healey http://www.csc.ncsu.edu/faculty/healey/PP/index.html

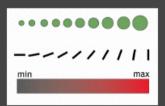
Mini-Course Outline

Perception **Frameworks** Color Space/Order Depth/Occlusion High Dimensionality Interaction Navigation/Zooming Focus+Context Graphs/Trees **Scalability** Task-Centered Design

Data Types

categorical (nominal)

· apples, oranges, bananas


ordered (ordinal)

- · small, medium, large
- · days: Sun, Mon, Tue, Wed, Thu, Fri, Sat

continuous (quantitative)

· 10 inches, 17 inches, 23 inches

Mackinlay, Card Framework

Data Types

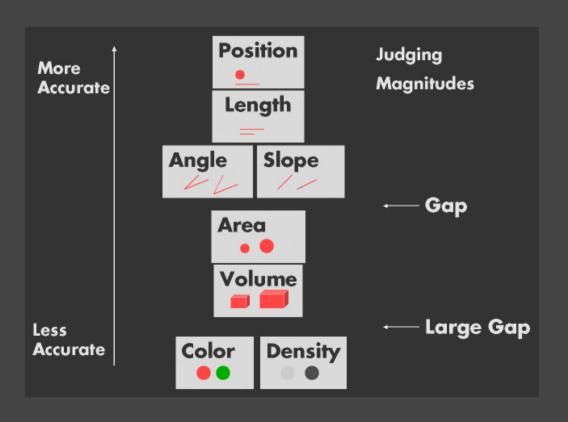
nominal, ordered, quantitative

Marks

- · point, line, area, surface, volume
- · geometric primitives

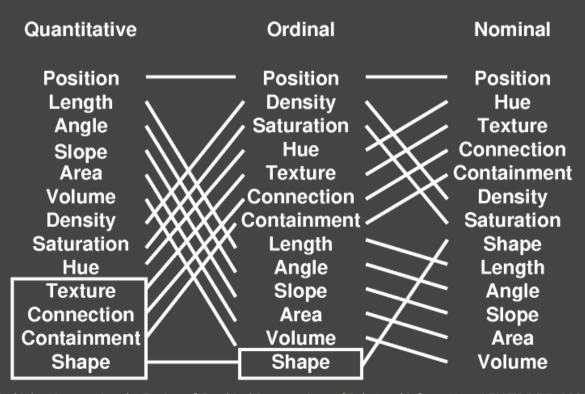
Retinal Properties / Perceptual Dimensions

- · size, brightness, color, texture, orientation, shape,...
- parameters that control the appearance of geometric primitives
- separable channels of information flowing from retina to brain


Data Variables

· 1D, 2D, 3D, 4D, 5D, etc

Bertin; Wilkinson; Stolte et al


· closest thing to central dogma we've got

Ranking Perceptual Dimensions

Ranking Varies by Data Type

spatial position best for all types

More Reading

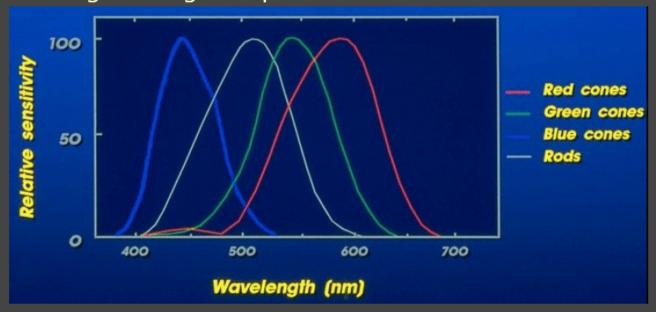
Chapter 1, Readings in Information Visualization: Using Vision to Think. Stuart Card, Jock Mackinlay, and Ben Shneiderman, Morgan Kaufmann 1999.

The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. Ben Shneiderman, Proc. 1996 IEEE Visual Languages, also Maryland HCIL TR 96-13 ftp://ftp.cs.umd.edu/pub/hcil/Reports-Abstracts-Bibliography/96-13html/96-13.html

The Structure of the Information Visualization Design Space. Stuart Card and Jock Mackinlay, Proc. InfoVis 97 http://citeseer.nj.nec.com/card96structure.html

The Grammar of Graphics, Leland Wilkinson, Springer 1999

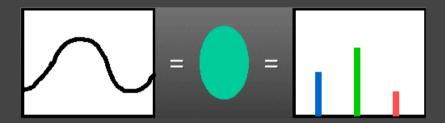
Semiology of Graphics: Diagrams, Networks, Maps. Jaques Bertin. University of Wisconsin Press, Madison (WI), 1983. W. J. Berg (Translator).


Mini-Course Outline

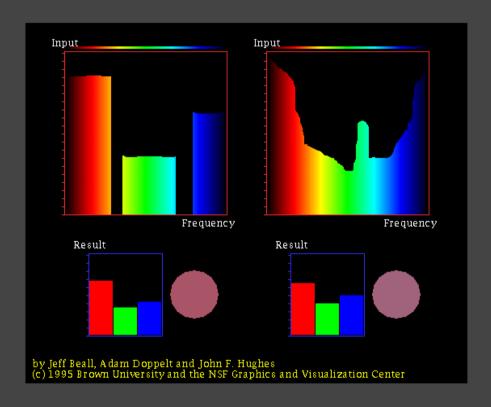
Perception Frameworks Color Space/Order Depth/Occlusion High Dimensionality Interaction Navigation/Zooming Focus+Context Graphs/Trees **Scalability** Task-Centered Design

Trichromacy

cone response is a function of wavelength for a given spectrum


- · multiple by response curve
- · integrate to get response

Metamerism


brain sees only cone response

different spectra appear the same

[Stone, SIGGRAPH 2001 course notes, graphics.stanford.edu/courses/cs448b-02-spring/04cdrom.pdf

Metamerism

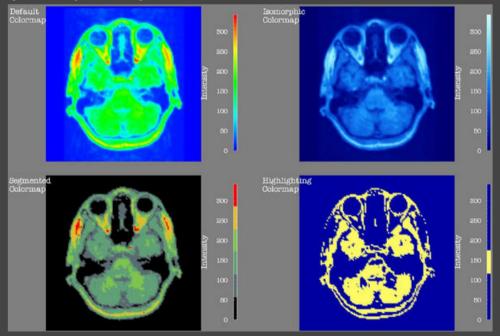
Color Rules of Thumb

nominal

- bad: > 12 hues
- · good: use \leq ~12 hues

ordinal

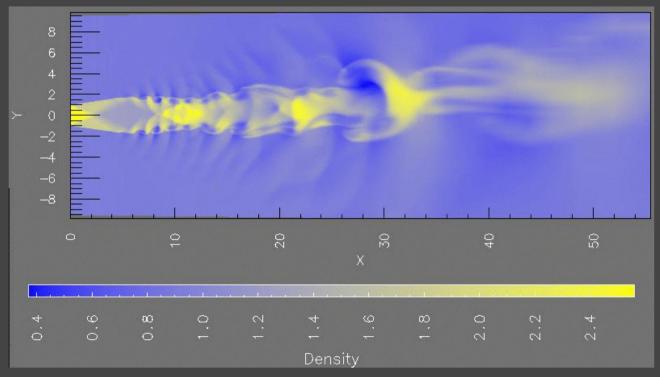
- bad: using hue
- · good: saturation/brightness


quantitative

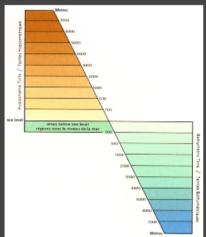
- · bad: rainbow colormaps
- · good: interpolate between two hues

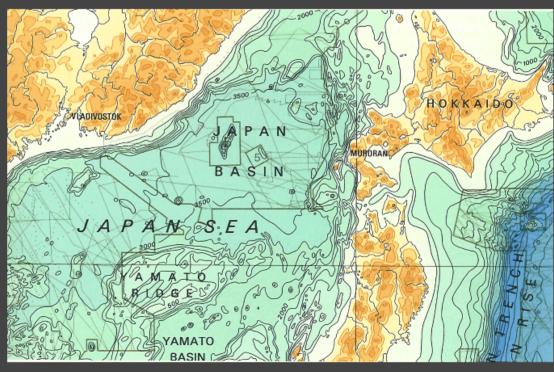
Colormaps

rainbow colormaps usually bad idea


- · hue is mediocre for showing order
- · not perceptually linear!

[Rogowitz and Treinish, How NOT to Lie with Visualization, www.research.ibm.com/dx/proceedings/pravda/truevis.htm


Colormaps


interpolating between two hues usually safe

[Rogowitz and Treinish, How NOT to Lie with Visualization, www.research.ibm.com/dx/proceedings/pravda/truevis.htm

Colormaps, Tufte

Color In Large Areas

Ware and Tufte agree: desaturate!

"excessively exuberant"

pastels for text bg

```
import java.applet.Applet;
import java.awt.Graphics;
import java.awt.Color;

public class ColorText extends Applet
{
    public void init () {
        red = 100;
        green = 255;
        blue = 20;
    }

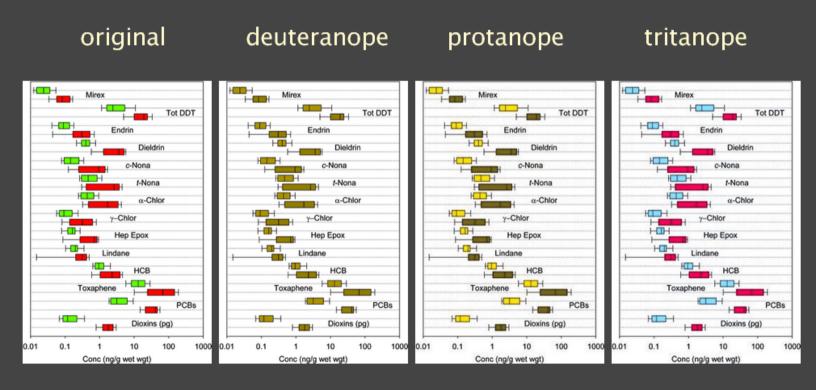
    public void paint (Graphics g) {
        Gr.setColor (new Color (red, green, blue));
        Gr.drawString ("Colored Text". 30,50);
    }

    private int red;
    private int green;
    private int blue;
}
```

Color Deficiency

deutanope protanope

- · has red/green deficit
- 10% of males!


tritanope

· has yellow/blue deficit

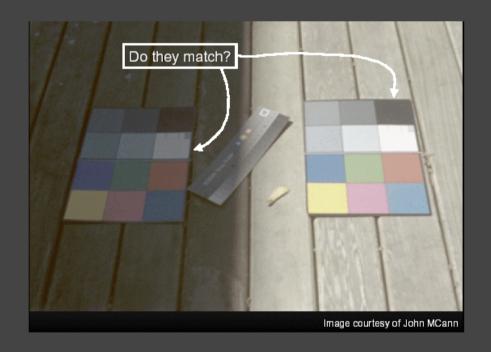
http://www.vischeck.com/vischeck

test your images

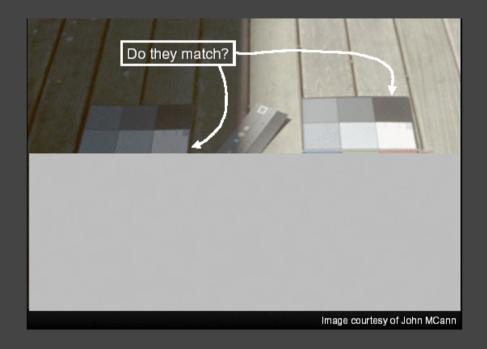
Color Deficiency Examples: vischeck

[www.cs.ubc.ca/~tmm/courses/cpsc533c-04-spr/a1/dmitry/533a1.html, citing Global Assessment of Organic Contaminants in Farmed Salmon, Ronald A. Hites, Jeffery A. Foran, David O. Carpenter, M. Coreen Hamilton, Barbara A. Knuth, and Steven J. Schwager, Science 2004 303: 226–229.]

44


Designing Around Deficiencies

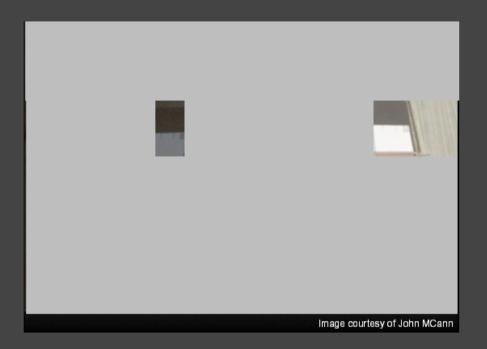
red/yellow/green could have domain meaning then distinguish by more then hue alone · saturation, brightness

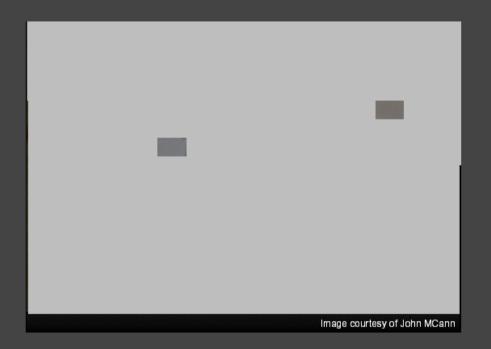

original						deuteranope						protanope						tritanope					
G)ty	Limit	Dest	Status	Ex Qty		Qty	Limit	Dest	Status	Ex Qty		Qty	Limit	Dest	Status	Ex Qty		Qty	Limit	Dest	Status	Ex Qt
+	20,000	29.96			10,000	+	20,000	29.96			10,000	+	20,000	29.96			10,000	+	20,000	29.96			10,00
	80,000	MKT			13,000		80,000	MKT			13,000		80,000	MKT			13,000	+	80,000	MKT			13,00
	20,000	MKT		Cxl:Trd	15,000	+	20,000	MKT		Cxl:Trd	15,000	+	20,000	MKT		Cxl:Trd	15,000	+	20,000	MKT		Cxl:Trd	15,00
-(200,000	30		Cor:Yes	86,00	-8	200,000	30		Cor:Yes	86,00	(1	200,000	30		Cor:Yes	86,00	8	200,000	30		Cor:Yes	86,0
	20,000	29.96	DOT		13,000	*	20,000	29.96	DOT		13,000		20,000	29.96	DOT		13,000	#	20,000	29.96	DOT		13,00
	20,000	29.96	Port		17,000	*	20,000	29.96	Port		17,000	+	20,000	29.96	Port		17,000	+	20,000	29.96	Port		17,0
	20,000	29.96	Joe G.	Cxl:Trd	20,00	+	20,000	29.96	Joe G.	Cxl:Trd	20,00	+	20,000	29.96	Joe G.	Cxl:Trd	20,00	+	20,000	29.96	Joe G.	Cxl:Trd	20,0
	20,000	29.96	DOT		13,000		20,000	29.96	DOT		13,000		20,000	29.96	DOT		13,000		20,000	29.96	DOT		13,0
	20,000	29.96	Port	Cxl:Brk	(+	20,000	29.96	Port	CxI:Brk		+	20,000	29.96	Port	CxI:Brk	9	+	20,000	29.96	Port	Cxl:Brk	
	20,000	29.96	Joe G.		13,000		20,000	29.96	Joe G.		13,000		20,000	29.96	Joe G.		13,000		20,000	29.96	Joe G.		13,0
	80,000	29.96	DOT		10,000		80,000	29.96	DOT		10,000		80,000	29.96	DOT		10,000		80,000	29.96	DOT		10,0
_	200,000	MKT			200,000	-	200,000	MKT			200,000	-	200,000	MKT			200,000		200,000	MKT			200,0
+	20,000	MKT	Joe G.		25,000	+	20,000	MKT	Joe G.		25,000	*	20,000	MKT	Joe G.		25,000	+	20,000	MKT	Joe G.		25,00
		Luce						NAME.						NACT.						1.00	Access (SAC)		-

Color/Brightness Constancy

relative judgements

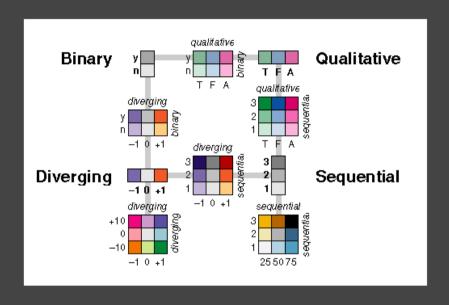
relative judgements


relative judgements


relative judgements

relative judgements

relative judgements


Context Matters

Bezold effect: outlines

[from Stone 2001 SIGGRAPH course graphics.stanford.edu/courses/cs448b-02-spring/04cdrom.pdf]

Cartographic Color Advice

[Brewer, www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html]

More Reading

Information Visualization: Perception for Design. Colin Ware. Morgan Kaufmann 1999. Chapter 3: Lightness, Brightness, Contrast, and Constancy

Information Visualization: Perception for Design. Colin Ware. Morgan Kaufmann 1999. Chapter 4: Color

Envisioning Information. Edward Tufte. Graphics Press, 1990. Chapter 5: Color and Information

How Not to Lie with Visualization, Bernice E. Rogowitz and Lloyd A. Treinish, Computers In Physics 10(3) May/June 1996, pp 268-273. http://www.research.ibm.com/dx/proceedings/pravda/truevis.htm

Color use guidelines for data representation. C. Brewer, 1999. http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/ASApaper.html

A Field Guide To Digital Color, Maureen Stone, AK Peters 2003