Lecture 1, InfoVis MiniCourse

Perception, Frameworks, Color

LaBRI, University of Bordeaux

14 June 2004

Tamara Munzner

Information visualization

interactive visual representation of abstract data

help human perform some task more effectively

external representation

· reduces load on working memory

External representation example

book topic relationships

[Godel, Escher, Bach. Hofstadter 1979]

Paradoxes - Lewis Carroll Turing - Halting problem Halting problem - Infinity

Paradoxes - Infinity Infinity - Lewis Carroll Infinity - Unpredictably long

Infinity - Original Researches
Infinity - Recursion
Infinity - Zeno
Infinity - Paradoxes
Lewis Carroll - Zeno
Lewis Carroll - Wordplay

Halting problem - Decision procedures BlooP and FlooP - AI Halting problem – Unpredictably long searches BlooP and FlooP - Unpredictably long searches BlooP and FlooP – Recursion Tarski – Truth vs. provability Tarski – Epimenides Tarski – Undecidability Paradoxes - Self-ref

External representation example offload cognition to visual systems read off answer Infinity Paradoxes (Halting problem) Zeno (Lewis Carroll) Decision procedures Epimenide Turing Wordplay Self-ref Tarski

Mini-Course Outline

Perception

Frameworks Color Space/Order Depth/Occlusion High Dimensionality Interaction Navigation/Zooming Focus+Context Graphs/Trees Scalability

Task-Centered Design

Human Perception

sensors/transducers

· psychophysics: determine characteristics

relative judgements: strong absolute judgements: weak

· continuing theme

different optimizations than most machines

- · eyes are not cameras
- perceptual dimensions not nD array
- · (brains are not hard disks)

Psychophysical Measurement JND: just noticeable difference increment where human detects change average to create "subjective" scale

Eyes

fovea

- thumbnail at arm's length
- · small high resolution area

saccades [video]

- · high-resolution samples
- brain makes collage
- · vision perceived as entire simultaneous field
- · fixation points: dwell 200-600ms
- · moving: 20–100ms

Ears

perceived as temporal stream

- but also samples over time
- hard to filter out when not important visual vs auditory attention

implications

- harder to create overview?
- hard to use as separable dimension?

'sonification' still very niche area

· alternative: supporting sound enhances immersion

More Reading

Information Visualization: Perception for Design. Colin Ware. Morgan Kaufmann 1999. Chapter 5: Visual Attention and Information That Pops Out

Information Visualization: Perception for Design. Colin Ware. Morgan Kaufmann 1999. Chapter 6: Static and Moving Patterns

The Psychophysics of Sensory Function, S. S. Stevens, Sensory Communication, MIT Press, 1961, pp 1–33. http://www.cs.ubc.ca/~tmm/courses/cpsc533c-03-spr/readings/ss.pdf

Graphical Perception: Theory, Experimentation and the Application to the Development of Graphical Models William S. Cleveland, Robert McGill, J. Am. Stat. Assoc. 79:387, pp. 531–554, 1984.

http://www.jstor.org/cgi-bin/jstor/printpage/01621459/di985961/98p1201a/0.pdf?userID=8e670917@ubc.ca/0. &backcontext=citation&config=jstor&dowhat=Acrobat&0.pdf

Perception in Visualization. Christopher G. Healey http://www.csc.ncsu.edu/faculty/healey/PP/index.html

Mini-Course Outline

Perception Frameworks

Color

Space/Order

Depth/Occlusion

High Dimensionality

Interaction

Navigation/Zooming

Focus+Context

Graphs/Trees

Scalability

Task-Centered Design

Data Types

categorical (nominal)

apples, oranges, bananas

. . . .

ordered (ordinal)

- · small, medium, large
- · days: Sun, Mon, Tue, Wed, Thu, Fri, Sat

continuous (quantitative)

10 inches, 17 inches, 23 inches

[graphics.stanford.edu/papers/polaris]

Mackinlay, Card Framework

Data Types

· nominal, ordered, quantitative

point, line, area, surface, volume

geometric primitives

- Retinal Properties / Perceptual Dimensions
 size, brightness, color, texture, orientation, shape,...
 parameters that control the appearance of geometric
 - primitives
 - separable channels of information flowing from retina to brain

Data Variables

· 1D, 2D, 3D, 4D, 5D, etc

Bertin; Wilkinson; Stolte et al

· closest thing to central dogma we've got

Mini-Course Outline Perception Frameworks Color Space/Order Depth/Occlusion High Dimensionality Interaction Navigation/Zooming Focus+Context Graphs/Trees Scalability Task-Centered Design

