Visualization Analysis & Design **BMVC** Tidbits Visualization Analysis & Design

Tamara Munzner Department of Computer Science

domain situation

University of British Columbia

UBC Biomedical Visualization and Communication Oct 2025, virtual

- who are the target users?

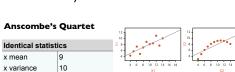
https://www.cs.ubc.ca/~tmm/talks.html#bmvc25

[A Nested Model of Visualization Design and Validation

Munzner, IEEETVCG 15(6):921-928, 2009

(Proc. InfoVis 2009).

abstraction What?


algorithm

Defining visualization (vis)

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- Why represent data visually?
- Computer-based visualization systems provide visual representations of dataset designed to help people carry out tasks more effectively
 - summaries lose information, details matter
 - -confirm expected and find unexpected patterns
 - -assess validity of statistical model

3.75

- Datasaurus Dozen Annealing, CHI 2017, Mateika & Fitzma

 - Same Stats, Different Graphs; Generating Datasets with Varied Appearance and Identical Statistics through Simulated

Munzner, IEEE TVCG 15(6):921-928, 2009

idiom

[A Multi-Level Typology of Abstract Visualization Tasks

Brehmer and Munzner, IEEETVCG 19(12):2376-2385.

algorithm

(Proc. InfoVis 2009).

abstraction

Visualization analysis framework: Four levels, three questions

- who are the target users?

domain situation

Visualization analysis framework: Four levels, three questions

- abstraction
- translate from specifics of domain to vocabulary of vis • what is shown? data abstraction
- why is the user looking at it? task abstraction

[A Multi-Level Typology of Abstract Visualization Tasks Brehmer and Munzner, IEEETVCG 19(12):2376-2385.

Visualization analysis framework: Four levels, three questions

- who are the target users? abstraction
- translate from specifics of domain to vocabulary of vis
- · what is shown? data abstraction • why is the user looking at it? task abstraction

compute

science

-how is it shown?

domain situation

- · visual encoding idiom: how to draw
- interaction idiom: how to manipulate

[A Multi-Level Typology of Abstract Visualization Tasks Brehmer and Munzner. IEEE TVCG 19(12):2376-2385, 2013 (Proc. InfoVis 2013), 1

[A Nested Model of Visualization Design and Validation

Munzner, IEEETVCG 15(6):921-928, 2009

idiom

algorithm

(Proc. InfoVis 2009). 1

abstraction What?

Visualization analysis framework: Four levels, three questions [A Nested Model of Visualization Design and Validation

- who are the target users?

• what is shown? data abstraction

- translate from specifics of domain to vocabulary of vis
- why is the user looking at it? task abstraction
- -how is it shown?

v mean

y variance

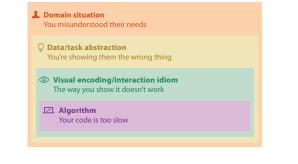
x/v correlation 0.816

domain situation

- · visual encoding idiom: how to draw
- interaction idiom: how to manipulate
- algorithm
- efficient computation

Why is validation difficult?

Why is validation difficult?


anthropology/ ethnography

science

psychology

anthropology/ ethnography

different ways to get it wrong at each level

· solution: use methods from different fields at each level

Wisual encoding/interaction idiom

1 Algorithm

Example: Find good movies

-attribute: audience & critic ratings

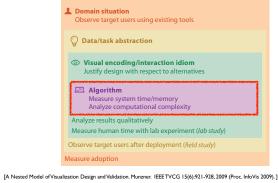
-levels: 3 or 5 or 10...

Justify design with respect to alternat

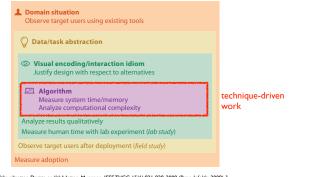
Analyze computational complexit

[A Nested Model of Visualization Design and Validation. Munzner: IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

- data: combine audience ratings and critic ratings


- task: find high-scoring movies for specific genre

· one possible choice for data and tasks, in domain language


problem-driven work

echnique-driven

Why is validation difficult? · solution: use methods from different fields at each level

Why is validation difficult? • solution: use methods from different fields at each level

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

- map what and why into generalized terms
- identify tasks that users wish to perform, or already do -find data types that will support those tasks
- possibly transform /derive if need be

Abstraction: Data & task

Why is validation difficult? • solution: use methods from different fields at each level

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

design Justify design with respect to alternative Algorithm computer technique-driven science Analyze computational complexit cognitive psychology Measure human time with lab experiment (lab study) Observe target users after deployment (field study

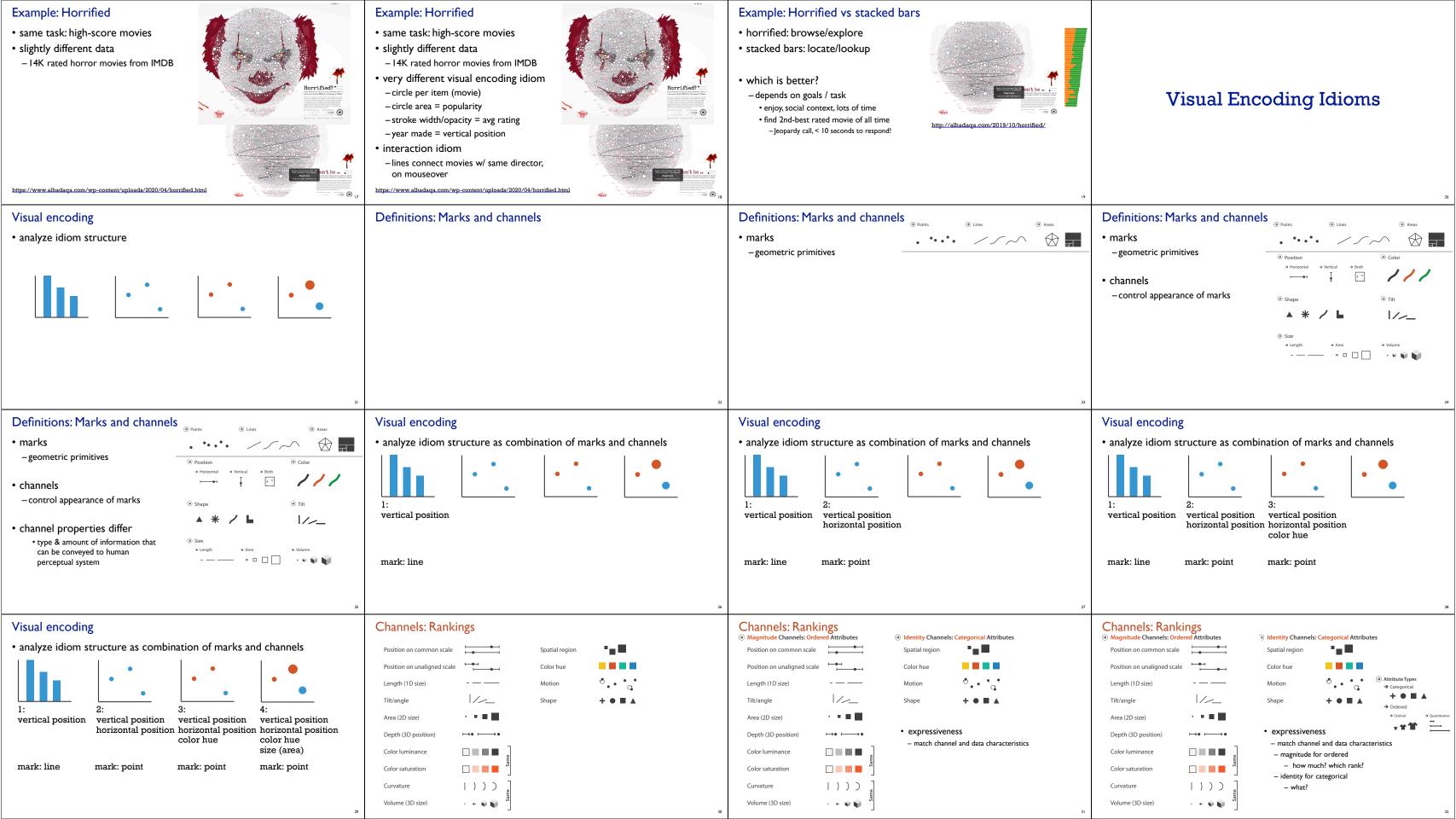
Example: Find good movies identify good movies in genres I like

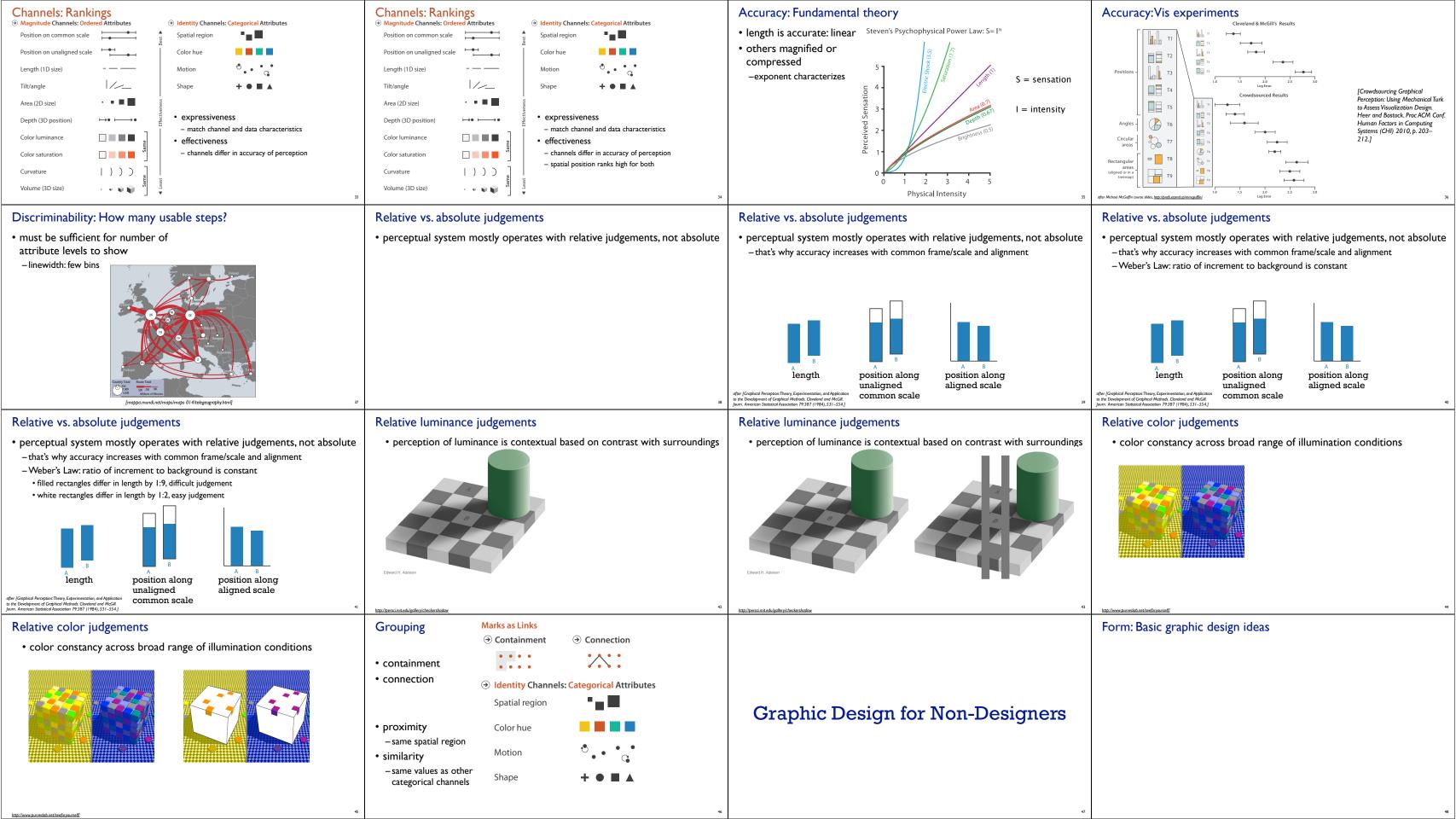
- domain:
- -general population, movie enthusiasts task: what is a good movie for me?
- highly rated by critics?
- -highly rated by audiences?
- successful at the box office?

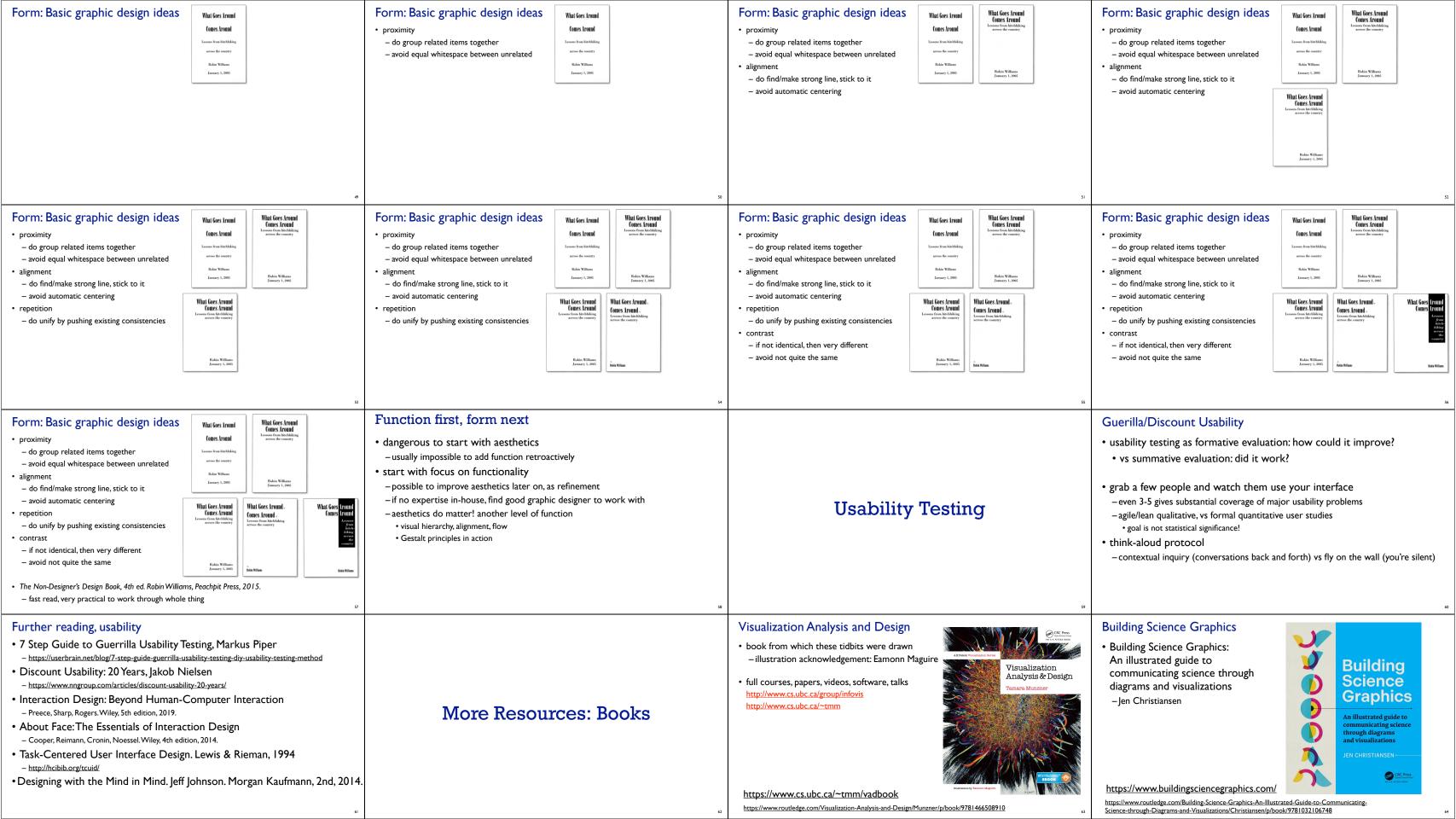
- -yes! data sources IMDB, Rotten Tomatoes...
- -attribute: genre - similar to movies I liked? - matches specific genres? data: (is it available?)
 - task: find extreme (high) values

abstractions?

ordinal


 categorical - stacked bar chart for ratings -levels: < 20 - items: movies • items: millions


one possible idiom


Abstractions

domain

abstraction

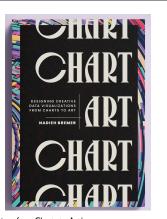
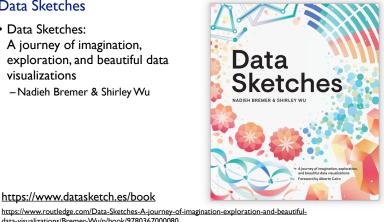


CHART CHART: Designing Creative Data

- Nadieh Bremer

Visualizations from Charts to Art

https://www.visualcinnamon.com/chart/ $\underline{https://www.routledge.com/CHART-Designing-Creative-Data-Visualizations-from-Charts-to-Art/}$

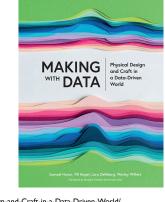

Bremer/p/book/9781032797755

Color

Data Sketches

· Data Sketches: A journey of imagination, exploration, and beautiful data visualizations

- Nadieh Bremer & Shirley Wu


https://www.datasketch.es/book

Categorical vs ordered color

data-visualizations/Bremer-Wu/p/book/9780367000080

Making with Data

- Making with Data: Physical Design and Craft in a Data-Driven World
 - editors:
 - Samuel Huron, Till Nagel, Lora Oehlberg, Wesley Willett

https://www.routledge.com/Making-with-Data-Physical-Design-and-Craft-in-a-Data-Driven-World/Huron-Nagel-Oehlberg-Willett/p/book/9781032182223

https://www.stefanieposavec.com/dear-data https://giorgialupi.com/dear-data

http://www.dear-data.com/by-week/

Luminance

- need luminance for edge detection
- -fine-grained detail only visible through luminance contrast
- -legible text requires luminance contrast!

Dear Data: A Friendship in 52 Weeks of Postcards

· inspiring celebration of data humanism

intrinsic perceptual ordering

· redundantly encode

Apple Store

- vary luminance

- change shape

al Apple Store

Wednesday, July 4

Deuteranope simulation

Giorgia Lupi and

Stefanie Posavec

Dear Data

[Seriously Colorful: Advanced Color Principles & Practices. Stone.Tableau Customer Conference 2014.]

Change the shape

Designing for color deficiency: Avoid encoding by hue alone

Opponent color and color deficiency

- perceptual processing before optic nerve
- one achromatic luminance channel (L*) -edge detection through luminance contrast
- -2 chroma channels
- -red-green (a*) & yellow-blue axis (b*) "color blind": one axis has degraded acuity
- -8% of men are red/green color deficient
- -blue/yellow is rare

[Seriously Colorful: Advanced Color Principles & Practices. Stone. Tableau Customer Conference 2014.]

Color spaces

- CIE L*a*b*: good for computation
- L* intuitive: perceptually linear luminance - a*b* axes: perceptually linear but nonintuitive
- · RGB: good for display hardware - poor for encoding
- HSL/HSV: somewhat better for encoding - hue/saturation wheel intuitive
- beware: only pseudo-perceptual!
- lightness (L) or value (V) ≠ luminance or L*
- Luminance, hue, saturation
- good for encoding
- but not standard graphics/tools colorspace

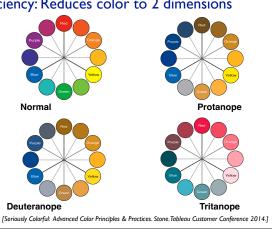
L from HLS

Seriously Colorful: Advanced Color Principles & Practices.

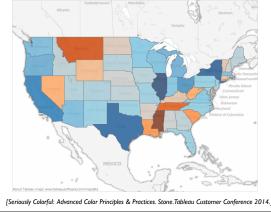
tone.Tableau Customer Conference 2014.]

Designing for color deficiency: Check with simulator

Deuteranope Protanope



eriously Colorful: Advanced Color Principles & Practices


http://rehue.net

Vary luminance tone.Tableau Customer Conference 2014.] [Seriously Colorful: Advanced Color Principles & Practices, Stone, Tableau Customer Conference 2014.]

Color deficiency: Reduces color to 2 dimensions

Designing for color deficiency: Blue-Orange is safe

• color constancy: simultaneous contrast effect

Bezold Effect: Outlines matter

Image courtesy of John McCann

https://makingwithdata.org/

Decomposing color

-color is confusing if treated as monolithic

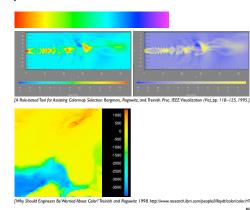
• first rule of color: do not talk about color!

- ordered can show magnitude

decompose into three channels

- luminance: how bright • saturation: how colorful
- categorical can show identity
- hue: what color
- channels have different properties
- -what they convey directly to perceptual system
- -how much they can convey: how many discriminable bins can we use?

Relative judgements: Color & illumination


Image courtesy of John McCann via Maureen Stone

Ordered color: Rainbow is poor default

Relative judgements: Color & illumination

problems

- -perceptually unordered -perceptually nonlinear
- benefits -fine-grained structure visible and nameable
- alternatives -large-scale structure: fewer

benefits

- -fine structure: multiple hues

[Cinteny: flexible analysis and visualization of synteny and genome rearmultiple organisms. Sinha and Meller. BMC Bioinformatics, 8:82, 2007.]

Ordered color: Rainbow is poor default

Categorical color: limited number of discriminable bins

 problems -perceptually unordered

highlights

-perceptually nonlinear

human perception built

on relative comparisons

-great if color contiguous

absolute comparisons

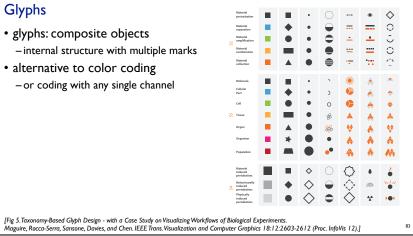
-surprisingly bad for

· noncontiguous small regions of color -fewer bins than you want -rule of thumb: 6-12 bins, including background and

- alternatives -large-scale structure: fewer
- with monotonically increasing luminance [eg viridis R/python]

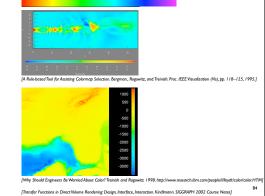
- -fine-grained structure visible and nameable

Glyphs

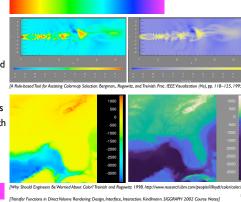

Viridis

- glyphs: composite objects
- -internal structure with multiple marks
- alternative to color coding
- or coding with any single channel

• colorful, perceptually uniform,


increasing luminance

colorblind-safe, monotonically

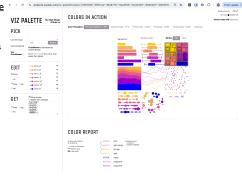

Ordered color: Rainbow is poor default

- problems
- -perceptually unordered
- -perceptually nonlinear
- benefits
- -fine-grained structure visible and nameable

Ordered color: Rainbow is poor default

- problems
- -perceptually unordered
- -perceptually nonlinear
- benefits
- -fine-grained structure visible and
- alternatives
- -large-scale structure: fewer hues -fine structure: multiple hues with
- monotonically increasing luminance [eg viridis R/python]
- -segmented rainbows for binned or categorical

More color resources: Muth


- DataWrapper guidance on color palette creation by Lisa Charlotte Muth https://blog.datawrapper.de/create-good-colorpalettes/ -lots of practical advice, easy to understand

More color resources: Viz Palette

· Viz Palette, by Elijah Meeks and Susie Lu

https://projects.susielu.com/viz-palette - colorblindness checks - examples for different mark sizes/types - report on distinguishability including names

More color resources: Color Buddy

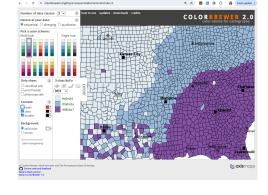
https://cran.r-project.org/web/packages/ viridis/vignettes/intro-to-viridis.html

Color Buddy, by Andrew McNutt and Maureen Stone

- https://color-buddy.netlify.app/ - check against colorblindness
- check different mark types/sizes

More color resources: Colorgorical

· Colorgorical, by Connor Gramazio http://vrl.cs.brown.edu/color



More color resources: oklch.com

- oklch perceptual space color picker/converter, by Andrey Sitnik & Roman Shamin (Evil Martians) https://oklch.com/
- -inspect color space itself OKLCH LCH

More color resources: ColorBrewer

 ColorBrewer, by Cynthia Brewer colorbrewer2.com

- categorical color, including name