Scalable Visual Comparison of Biological Trees and Sequences

Tamara Munzner
Imager Lab
University of British Columbia CS

Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration (j P BIRS)
25 May 2004

Outline
Stirring up controversy

Comparing big phylogenetic trees
- Treejuxtaposer
 - phylogeny background
 - structural difference computation
 - guaranteed visibility

Browsing huge trees
- TJC, TJC-Q

Comparing many large gene sequences
- Sequencejuxtaposer

Collaborators
Treejuxtaposer joint work with
- Francois Guimbretiere, Maryland
- Serrdar Tasiran, Compaq SRC
- Li Zhang, Compaq SRC
- Yunhong Zhou, Compaq SRC
- James Slack, UBC

TJC, TJC-Q joint work with
- Dale Beerman, Virginia
- Greg Humphreys, Virginia

Sequencejuxtaposer joint work with
- James Slack, UBC
- Kristian Hildebrand, UBC
- Katherine St. John, CUNY/Lehman

Funding: NSF/DEB-0121682

Stirring up controversy
definitions and scope, infovis vs. scavis:
- spatialization chosen not given
- big parameter space, justify design decisions
- wider scope, mostly more shallowly explored

Stirring up controversy
definitions and scope, infovis vs. scavis:
- spatialization chosen not given
- big parameter space, justify design decisions
- wider scope, mostly more shallowly explored
- many algorithms and techniques span the border
Navigation

intimate relationship with spatial layout choices
- constrained
- nonliteral

Focus + Context
- overview and detail integrated into single view
- show features in context
- help users maintain their orientation

distortion-based navigation
- preserve topological order
- non-linearly compress/expose geometry

Outline

Stirring up controversy

Comparing big phylogenetic trees
- Treejuxtaposer
 - phylogeny background
 - structural difference computation
 - guaranteed visibility

Browsing huge trees
- TJC, TJC-Q

Comparing many large gene sequences
- Sequencejuxtaposer

Tree comparison

active area: hierarchy browsing
- previous work: browsing
- comparison still open problem

bioinformatics application
- phylogenetic trees reconstructed from DNA

Phylogeny background

tree describing evolutionary relationships
- leaves (taxa): species, genes, disease strains

Phylogenetic reconstruction

know leaves, infer interior nodes
- similarity:
 - parallel evolution or common ancestor?
 - siblings unordered

old: morphology
- observable similarities

new: molecular
- DNA sequences – nucleotides
- protein sequences – amino acids

Phylogeny uses

establish relationships
- understand species evolution
- track diseases genes evolve 1M x faster

predict characteristics
- design drugs
- reveal gene function
Phylogenetic/Evolutionary tree

Common tree size now

Tree of Life: 10M species

Phylogenetic reconstruction

multiple trees
- reconstruction algorithm returns many possibilities
- different biological assumptions or data

Phylogenetic reconstruction

Paper comparison

focus
context

visual pairwise comparison
- open problem

Will Fischer, UT-Austin, May 2003
TreeJuxtaposer video
platforms shown
- java 1.4, GL4Java 2.7 bindings for OpenGL

Windows
- 2.4 GHz P3, nVidia Quadro4 700XGL
 - 1.1GB java heap
 - window sizes 1280x1024, 3800x2400

Linux
- 3.1 GHz P4, nVidia GeForce FX 5800 Ultra
 - 1.7GB java heap
 - window size 800x600

Outline
Stirring up controversy
Comparing big phylogenetic trees
 - TreeJuxtaposer
 - phylogeny background
 - structural difference computation
 - guaranteed visibility
Browsing huge trees
 - TJC, TJC-Q
Comparing many large gene sequences
 - SequenceJuxtaposer

Previous work
tree comparison
- RF distance [Robinson and Foulds 81]
- perfect node matching [Day 85]
- creation/deletion [Chi and Card 99]
- leaves only [Graham and Kennedy 01]

Similarity score

\[S(m,n) = \frac{|L(m) \cap L(n)|}{|L(m) \cup L(n)|} \]

\[T_1 \]
\[T_2 \]

\[L(m) = \{E,F\} \]
\[L(n) = \{D,E,F\} \]

\[S(m,n) = \frac{2}{3} \]

Best corresponding node

\[BCN(m) = n \]

\[BCN(m) = \text{argmax}_{v \in T_1} (S(m,v)) \]
- computable in \(O(n \log^2 n) \)
- linked highlighting

Marking structural differences

\[\text{Nodes for which } S(v,BCN(v)) = 1 \]
Structural difference algorithm
powerful and totally automatic
matches intuition
- UT-Austin biology lab
 - other biologists
 - other domains
leads users to important locations
efficient algorithms: 7s for 2 x 140K nodes

Outline
Stirring up controversy
Comparing big phylogenetic trees
 - TreeJuxtaposer
 - phylogeny background
 - structural difference computation
 - guaranteed visibility
Browsing huge trees
 - TIC, TIC-Q
Comparing many large gene sequences
 - SequenceJuxtaposer

Guaranteed mark visibility

Marks (Features)
regions of interest shown with color highlight
 - structural difference
 - search results
 - user-specified
purpose
 - guide navigation
 - provide landmarks
 - contiguity check for subtrees

How can a mark disappear?

moving outside viewport
- choose global Focus+Context navigation
 "tacked-down" borders

Focus+Context previous work
combine overview and detail into single view
Focus+Context
 - large tree browsing
 - Cone Trees [Robertson et al 91]
 - Hyperbolic Trees [Lamping et al 95, Munzner 97]
 - Space Tree [Plaisant et al 03]
 - DOI Tree [Card and Nation 02]
 - global
 - Document Lens [Robertson and Mackinlay 93]
 - Rubber Sheets [Sarker et al 93]
our contribution
 - scalability, guaranteed visibility
How can a mark disappear?

- moving outside viewport
 - choose global Focus+Context navigation
 - "tacked-down" borders
- occlusion
 - choose 2D++ layout
- culling at subpixel sizes
 - develop efficient check for marks when culling
 - cost depending on visible, not total, node count

Mark checking when culling

- does region of space enclose mark on this tree?
 - precompute range beneath subtree
 - correlate objects to spatial extent with quadtree
- does region of space enclose linked mark from other tree?
 - up to O(m) to look up best match for each node
 - solution: intersect node ranges between trees
 - reduces to point in polygon test
 - O(n log n) preprocess, O(log² n) lookup

Intersecting ranges between trees

- point in polygon
 - tuple of indices in N-dim range

Focus+Context quadtrees

- quadtree cells also "painted on rubber sheet"
 - geometry at fixed offset from cell boundary
 - opposite of kinetic data structures
 - must update boundary position when stretch/shrink
- hierarchical position encoding
 - absolute location for boundary
 - lookup: O(1), update: O(n)
 - relative distance between parent cell boundaries
 - lookup: O(log n), update: O(log n)

Guaranteed visibility

- infrastructure needed for efficient computation
- relief from exhaustive exploration
 - missed marks lead to false conclusions
 - hard to determine completion
 - tedious, error-prone
- compelling reason for Focus+Context
 - controversy: does distortion help or hurt?
 - strong rationale for comparison

TreeJuxtaposer contributions

- first interactive tree comparison system
 - automatic structural difference computation
 - guaranteed visibility of landmark areas
- scalable to large datasets
 - 250,000 to 500,000 total nodes
 - all preprocessing subquadratic
 - all realtime rendering sublinear
- techniques broadly applicable
 - not limited to biological trees
- overall winner: InfoVis Contest 2003
Outline

Stirring up controversy

Comparing big phylogenetic trees
- Treeluxtaper
 - phylogeny background
 - structural difference computation
 - guaranteed visibility

Browsing huge trees
- TJC, TJC-Q

Comparing many large gene sequences
- SequenceJuxtaposer

Scaling up

TreeJuxtaposer limits
- memory footprint
- rendering CPU bound, want graphics bound

goal: browse huge trees
- concentrate on browsing

TJC-Q: 5M nodes
- commodity platforms

TJC: 15M nodes
- leading-edge graphics hardware

Memory footprint reduction

TJ Focus + Context quadtrees
- navigating, culling, drawing, picking
- new data structures and algorithms instead

Quadtrees: navigating

navigating with stretch/shrink
- TJ: quadtree
- new: lightweight grid data structure

Quadtrees: culling and drawing

culling subpixel objects
- TJ: quadtree cell size test
- new: leaf overlap test

drawing
- TJ: progressive in order of importance
- new: from root
- new alg fast enough to ignore order

Quadtrees: picking

TJ: picking with spatial subdivision

TJC: multiple render target buffer
- encode object ID into offscreen buffer
- supported in hardware on latest ATI cards

TJC-Q: low-memory quadtrees
Outline
Comparing big phylogenetic trees
 - TreeJuxtaposer
 - phylogeny background
 - structural difference computation
 - guaranteed visibility

Browsing huge trees
 - TJC, TJC-Q

Comparing many large gene sequences
 - SequenceJuxtaposer

Accordion drawing
not just for trees!
general scalable visualization infrastructure
 - "rubber sheet" navigation
 - guaranteed visibility of marked areas
implementation: modular package
 - layer below TreeJuxtaposer

SequenceJuxtaposer
accordion drawing for DNA/RNA

previous work: web-based sequence browsers
 - Ensembl, UCSC Genome Browser, NCBI MapViewer
 - heavily used, huge server-side databases
 - zoom or pan in jumps
 - can’t see context

fluid Focus+Context navigation
guaranteed visibility
 - establish when these features useful
 - proof of concept prototype, eventually merge

SJ in action
shown on publicly available data
 - onion yellows phytoplasma: whole genome
 - 860 Kbp
 - Murphy: 22 genes
 - 44 mammals x 17000 bp each = 748 Kbp
 - Treezilla: single gene
 - 500 plants x 1428 bp each = 714 Kbp

scales to 1.7 Mbp with 1.7GB heap
[videos]

Expanding search results

Changing difference thresholds

25%
inspecting 1 of 22 genes
Changing difference thresholds

50%

Changing difference thresholds

60%

Changing difference thresholds

67%

sequences in phylogenetic order
 - phylogenetic signal visible

Work in progress

trees with weighted edges
protein sequences
linking tree and sequence navigation
accordion drawing for sets
 - data mining: transaction processing
open-source release
 - olduvai.sourceforge.net

Other projects in progress

dimensionality reduction
 - steerable MDS (multidimensional scaling)
 - with Matt Williams

Other projects in progress

perception experiments
 - quantifying cost of Focus+Context fisheye distortions
 - no-cost and low-cost regions for visual search task
 - with Keith Lau, Ron Rensink
More information

www.cs.ubc.ca/~tmm/papers.html
www.cs.ubc.ca/~tmm/talks.html

papers, slides, images, movies

software: olduvai.sourceforge.net