Visualization: Why It's Tricky, Where To Start

Tamara Munzner

Department of Computer Science University of British Columbia

ProK Workshop 20 Feb 2014, Bellairs Barbados

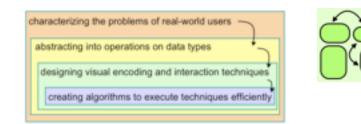
http://www.cs.ubc.ca/~tmm/talks.html#bellairs14

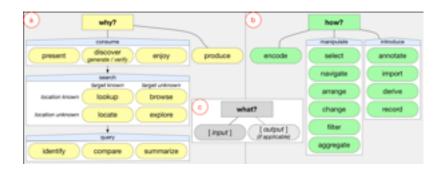
Vis Definition: Why It's Tricky

- vis systems provide visual representations of datasets designed to help people carry out tasks more effectively
- augment human capabilities
 - not replace people with computational decision-making
- design space of possible visualization idioms is huge
 - most possibilities ineffective
 - validating effectiveness of a design is both necessary and difficult
- three very different kinds of resource limitations
 - computers
 - humans
 - displays

Questions Answered Elsewhere (VAD Ch I)

- why have a human in the decision-making loop?
- why have a computer in the loop?
- why use an external representation?
- why depend on vision?
- why show the data in detail?
- why use interactivity?
- what is the design space of visualization idioms?
- why focus on tasks?
- why are most designs ineffective?
- why care about effectiveness?
- why is validation difficult?


Where To Start: Five Flavors of Paper Types


- Problem-driven work
 - design studies
- Technique-driven work


 algorithms, idioms
- Systems
 - (as in other fields)
- Evaluation
 - lab/field/data studies
- Theoretical foundations
 - models

Theory/Models

- nested model for vis design and validation
 - revisited: blocks and guidelines
- multi-level typology of abstract visualization tasks
- design study methodology
- papers process and pitfalls

- Nother Fah Nor Fowl

2D-Good, 3D Better

+ Criter Cacephony

Uninstitled Visual Encoding

Hammer In Search Of Nail

isual Encoding Pittabs

- Roults Pithils
- + Unlettend By Time - Foat and Loathing of Complexity
 - Stew Mat Comparison
 - + Tity Toy Datasta
 - + But My Priends Liked h
 - · Unionified Tasks Wolding Sovie Pottatic

 - Deadly Denail Dump

characterizing the problems of real-world users

abstracting into operations on data types

designing visual encoding and interaction techniques

creating algorithms to execute techniques efficiently

A Nested Model

of Visualization Design and Validation

http://www.cs.ubc.ca/labs/imager/tr/2009/NestedModel/

A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).

Nested Levels of Design

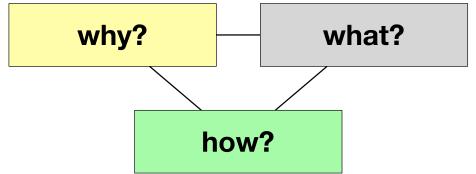
• four levels of design problems

domain situation				
data/task abstraction				
visual encoding / interaction idiom				
algorithm				

Nested Levels of Design

- four levels of design problems
 - different threats to validity at each level

domain situation: you misunderstood their needs				
data/task abstraction: you're showing them the wrong thing				
visual encoding / interaction idiom: the way you show it doesn't work				
algorithm: your code is too slow				


• data abstraction: don't just use what you're given, derive the right thing!

Nested Levels of Design and Validation

	domain situation: observe target users using existing tools				
	data/task abstraction:				
			coding/interaction idiom: tify design wrt alternatives		
			algorithm: measure system time analyze computational complexity		
			alyze results qualitatively asure human time with lab experiment (''user study'')		
observe target users post-deployment ("field study")					

measure adoption

- mismatch: cannot show idiom good with system timings
- mismatch: cannot show abstraction good with lab study

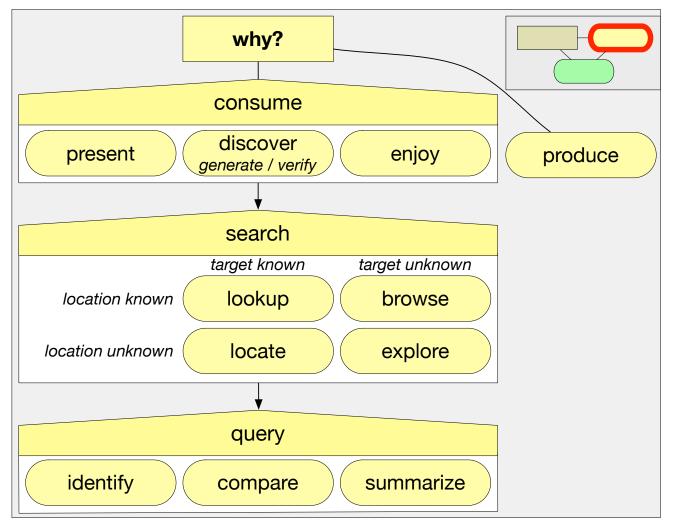
A Multi-Level Typology of Abstract Visualization Tasks

joint work with:

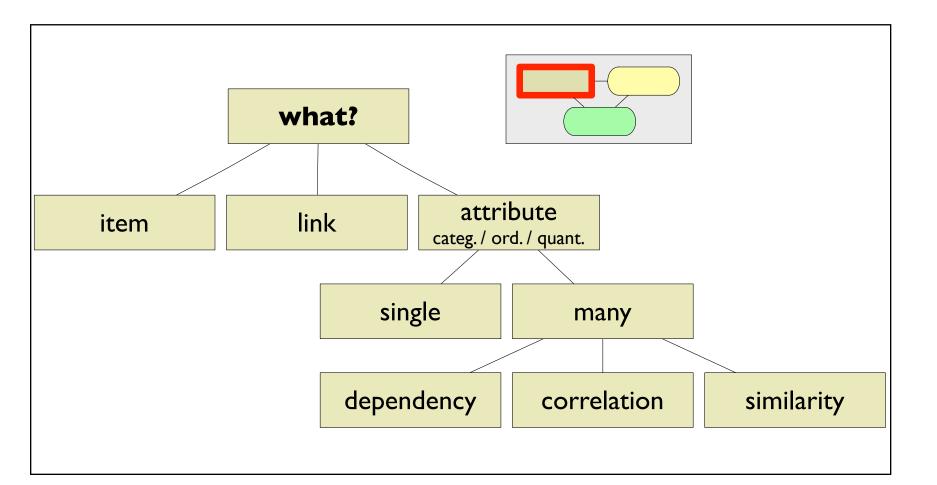
Matt Brehmer

http://www.cs.ubc.ca/labs/imager/tr/2013/MultiLevelTaskTypology/

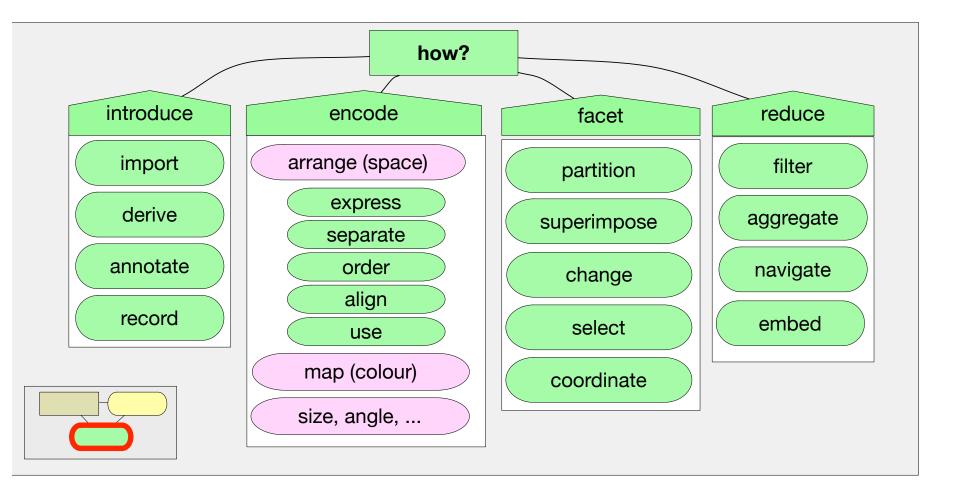
A Multi-Level Typology of Abstract Visualization Tasks

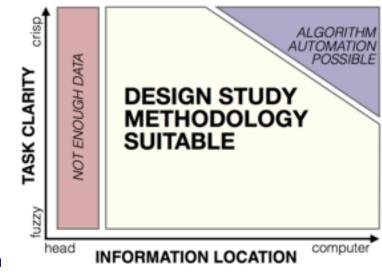

Brehmer, Munzner. IEEE TVCG 19(12): 2376-2385, 2013 (Proc. InfoVis 2013).

PreviousClassifying Tasks, Goals, Intentions,WorkObjectives, Activities, Interactions


high level of abstraction low level of e.g. "integration of insight" abstraction e.g. "retrieve value" Amar & Stasko (2004) Heer & Shneiderman (2012) Card, Mackinlay, Shneiderman (1999) Mullins & Treu (1993) Lee et al. (2006) Klein, Moon, & Hoffman (2006) Pike, Stasko, et al. (2009) Raskin (1990) Amar, Eagan, & Stasko (2005) Liu & Stasko (2010) Springmeyer et al. (1992) Roth & Mattis (1990) Pirolli & Card (2005) Andrienko & Andrienko (2006) Shneiderman (1996) Spence (2007) RE Roth (2012) Tweedie (1997) Casner (1991) Valiati et al. (2006) Chi & Riedl (1998) Chuah & Roth (1996) Ward & Yang (2004) Dix & Ellis (1998) Keim (2002) Wehrend & Lewis (1990) Gotz & Zhou (2008) A mid-level gap? Zhou & Feiner (1998) Meyer, Sedlmair, & Munzner (BELIV 2012)

Multi-Level Typology of Abstract Visualization Tasks


$\{ why , what , how \}$



Multi-Level Typology of Abstract Visualization Tasks (VAD version) { why, what, how }

Multi-Level Typology of Abstract Visualization Tasks (VAD version) { why, what, how }

Design Study Methodology

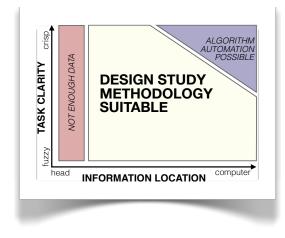
Reflections from the Trenches and from the Stacks

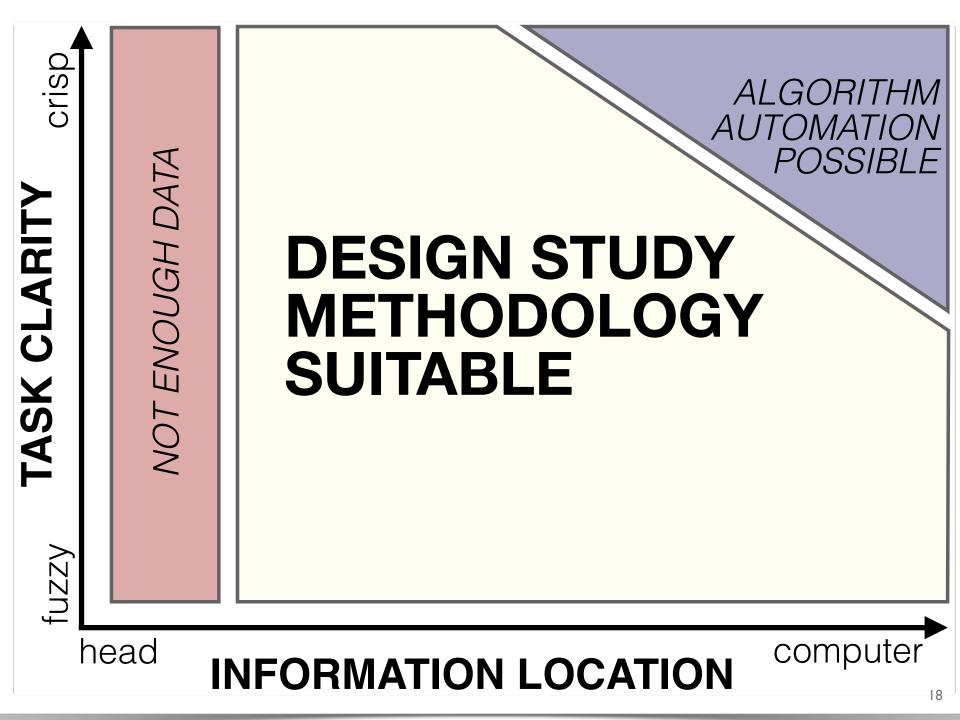
joint work with:

Michael SedImair, Miriah Meyer

http://www.cs.ubc.ca/labs/imager/tr/2012/dsm/

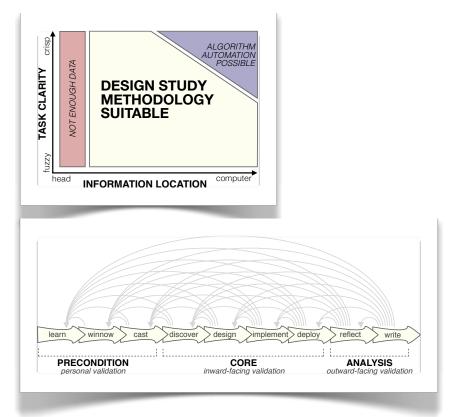
Design Study Methodology: Reflections from the Trenches and from the Stacks. SedImair, Meyer, Munzner. IEEE TVCG 18(12): 2431-2440, 2012 (Proc. InfoVis 2012).

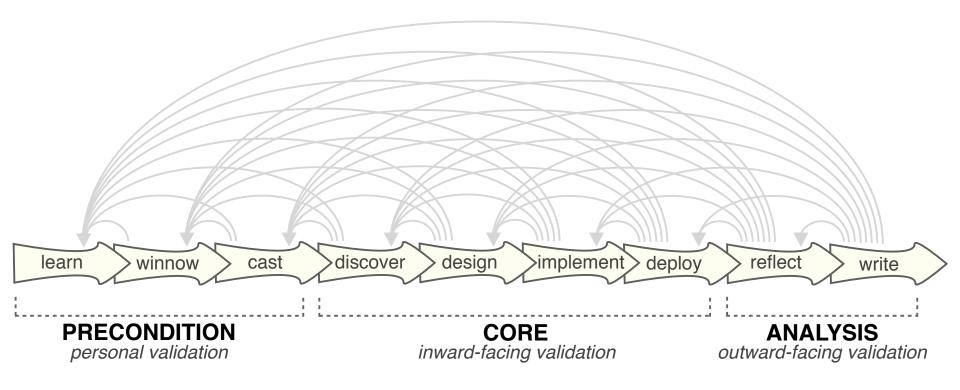

Design Studies


- long and winding road with many pitfalls
 - reflections after doing 21 of them
 - many successes, a few failures, many lessons learned

How To Do Design Studies

• definitions





How To Do Design Studies

• definitions

• 9-stage framework

How To Do Design Studies

crisp

TASK CLARITY

fuzzy

head

learn

winnow

PRECONDITION

personal validation

VOT ENOUGH DATA

DESIGN STUDY METHODOLOGY SUITABLE

INFORMATION LOCATION

cast

>discover

> design

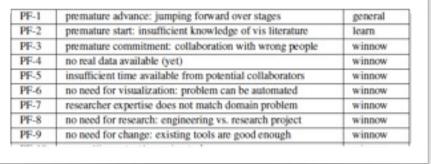
CORE

inward-facing validation

>implement > deploy

reflect

ANALYSIS

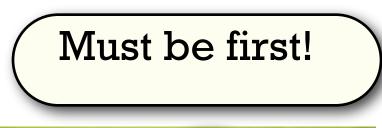

outward-facing validation

write

definitions

• 9-stage framework

32 pitfalls and how to avoid them

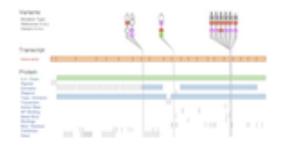

ALGORITHM AUTOMATION POSSIBLE

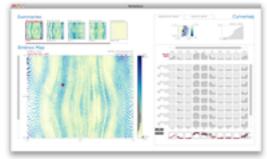
computer

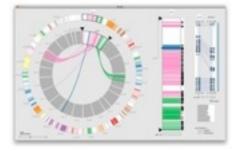
Pitfall Example: Premature Publishing

technique-driven

problem-driven

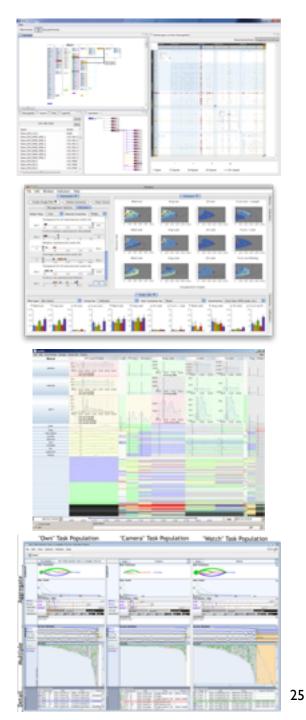



Where To Start: Many Flavors of Work


- Problem-driven work
 - design studies
- Technique-driven work – algorithms, idioms
- Evaluation
 - lab/field/data studies
- Theoretical foundations
 - models

Design Studies: Biology Domain

- Variant View: gene sequence variants
- MulteeSum, Pathline: comparative functional genomics
- MizBee: comparative genomics (synteny)
- Cerebral: gene expression + interaction network

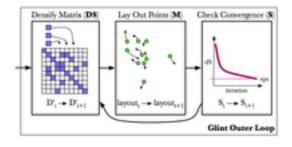

Design Studies: Other Domains

• RelEx: automative networks

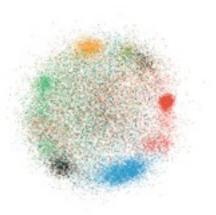
• Vismon: fisheries simulation/mgmt

• LiveRAC: large-scale system monitoring

• SessionViewer: web logs

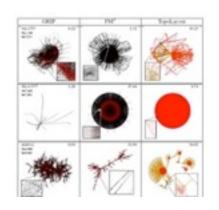

26

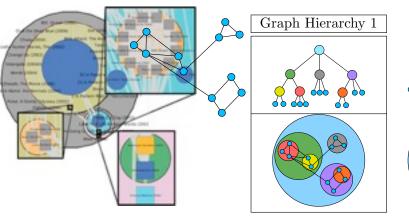
Techniques/Systems: Dimensionality Reduction

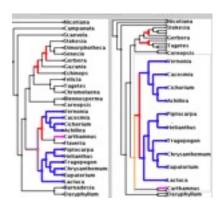

• Glint: costly distance functions

 DimStiller: visual dimensional analysis and reduction toolkit

• Glimmer: GPU accelerated MDS

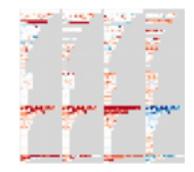


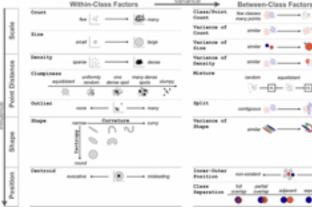




Techniques: Graphs/Trees

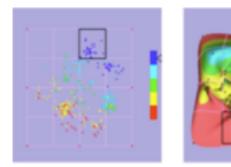
- general multilevel/compound graphs
 - layout
 - TopoLayout
 - interaction
 - Grouse
 - GrouseFlocks
 - TugGraph
- evolutionary tree comparison
 - TreeJuxtaposer



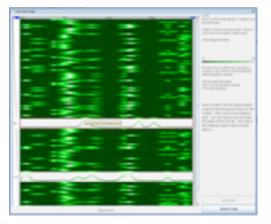


Evaluation: Dimensionality Reduction

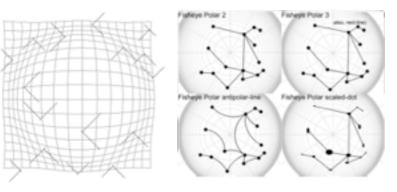
 guidance on scatterplot/DR choices


taxonomy of cluster separation factors

2D points vs 3D landscapes



Evaluation: Focus+Context


• overviews: separate vs. integrated views

navigation: stretch and squish vs. pan/zoom navigation

 impact of distortion on visual search, visual memory

Evaluation, When and How (excerpt)

Tamara Munzner University of British Columbia

Evaluation: How Much Evaluation Is Enough? Panel,VIS13

Victories and challenges: I

- evolving sophistication: the user study pendulum swings
- we've come a long way!
 - no user studies at all
 - a few dubious ones, lacking rigor
 - some good ones appear

- rigorous studies are common
- but pushes to change culture often overshoot...
 - some reviewers expect all papers to have user studies
 - some authors do user studies without understanding why or how

Victories and challenges: II

- significance testing with controlled experiments
 - we've moved beyond "my friends liked it"
 - new frontier: multiple regression for comparison

[Cognitive measurements of graph aesthetics. Ware, Purchase, Colpoys, and McGill. Information Visualization, 2002. 1(2): p. 103-110.]

- new frontier: thinking beyond time and error
 - qualitative vs quantitative
 - different axis from lab/field
 - BELIV workshops

- 06 AVI, 08 CHI, 10 CHI, 12 VisWeek

Victories and challenges: III

- post-deployment studies with target users
 - we've moved beyond "I'm the only one who's used it"
 - new frontier: post-adoption studies
 - Seven Scenarios: only 5 out of 800!

[Empirical Studies in Information Visualization: Seven Scenarios. Lam, Bertini, Isenberg, Plaisant, and Carpendale. TVCG 18(9):1520-1536, 2012.]

• what happens after you get that first paper out?...

Of course...

- ... you should evaluate your work
 - use appropriate methods!
- ... you should **not** have a user study in every paper
 - avoid litmus test and cargo cult thinking

http://en.wikipedia.org/wiki/File:Litmus_paper.JPG

http://blog.bhargreaves.com/wp-content/uploads/2010/04/cargo-cult.jpg