Information Visualization with

Accordion Drawing

Tamara Munzner

University of British Columbia

Guaranteed Visibility

» marks are always visible
 easy with small datasets

Accordion Drawing

* rubber-sheet navigation
— stretch out part of surface,
the rest squishes
— borders nailed down
— Focus+Context technique
« integrated overview, details
—old idea
* [Sarkar etal 93], ...

 guaranteed visibility

— marks always visible
— important for scalability
— new idea

* [Munzner et al 03]

Guaranteed Visibility Challenges

hard with larger datasets

reasons a mark could be invisible
— outside the window

« AD solution: constrained navigation
—underneath other marks

« AD solution: avoid 3D
—smaller than a pixel

« AD solution: smart culling

Outline

trees

— TreeJuxtaposer
sequences

— SequenceJuxtaposer
scaling up trees
-TJC

general AD framework
— PRISAD

power sets

— PowerSetViewer
evaluation

jus eiffingeri

Philautus mjobergi
Philautus petersi
Polypedates cruciger
*

-Boophis tept
Mantslla aurantiaca.
700l Mantella sp.
Mantidactylus grandidieri

jervarya
Nannophrys manmorata

M Meegaskumbura et al., Science 298:379 (2002)

David Hillis, Science 300:1687 (2003)

Treeduxtaposer

« comparison of evolutionary trees
— side by side

+ demo
— olduvai.sf.net/tj

9

Common Dataset Size Today

M Meegaskumbura et al., Science 298:379 (2002) 8

Paper Comparison: Multiple Trees

focus

context

TJ Contributions

first interactive tree comparison system
—automatic structural difference computation
—guaranteed visibility of marked areas
scalable to large datasets

— 250,000 to 500,000 total nodes

—all preprocessing subquadratic

—all realtime rendering sublinear
introduced accordion drawing (AD)
introduced guaranteed visibility (GV)

Joint Work: TJ Credits

Tamara Munzner, Francois Guimbretiere, Serdar Tasiran,
Li Zhang, and Yunhong Zhou.

TreeJuxtaposer: Scalable Tree Comparison using
Focus+Context with Guaranteed Visibility.

SIGGRAPH 2003
www.cs.ubc.ca/~tmm/papers/tj

James Slack, Tamara Munzner, and Francois Guimbretiere.
TreeJuxtaposer: InfoVis03 Contest Entry. (Overall Winner)
InfoVis 2003 Contest
www.cs.ubc.ca/~tmm/papers/contest03

Genomic Sequences

» multiple aligned sequences of DNA

» now commonly browsed with web apps
—zoom and pan with abrupt jumps

+ check benefits of accordion drawing
—smooth transitions between states

—guaranteed visibility for globally visible
landmarks

SJ Contributions

« accordion drawing for gene sequences
* paper results: 1.7M nucleotides

— current with PRISAD: 40M nucleotides
« joint work: SJ credits

James Slack, Kristian Hildebrand, Tamara Munzner, and
Katherine St. John.

SequenceJuxtaposer: Fluid Navigation For Large-Scale
Sequence Comparison In Context.

Proc. German Conference on Bioinformatics 2004
www.cs.ubc.ca/~tmm/papers/sj

Outline

trees

— TreeJuxtaposer
sequences

— SequenceJuxtaposer
scaling up trees
-TJC

general AD framework
— PRISAD

power sets

— PowerSetViewer
evaluation

SequenceJuxtaposer

+ dense grid, following conventions

— rows of sequences partially correlated
— columns of aligned nucleotides
— videos

Outline

trees

— TreeJuxtaposer
sequences

— SequenceJuxtaposer
scaling up trees
-TJC

general AD framework
— PRISAD

power sets

— PowerSetViewer
evaluation

Scaling Up Trees Navigation Without Quadtrees

* TJ limits
—large memory footprint

— CPU-bound, far from achieving peak
rendering performance of graphics card

* quadtree data structure used for
— placing nodes during layout
—drawing edges given navigation
—culling edges with GV
—selecting edges during interaction

Eliminating the Quadtree Drawing the Tree

* new drawing algorithm « continue recursion only if sub-tree
—addresses both ordering and culling vertical extent larger than apixel
+ new way to pick edges — otherwise draw flattened path
—uses advances in recent graphics
hardware
« find a different way to place nodes
— modification of O-buffer for interaction

yl

Guaranteed Visibility Picking Edges

+ continue recursion only if subtree * Multiple Render Targets
contains both marked and unmarked —draw edges to displayed buffer
nodes —encoding edge identifier information in
vl auxiliary buffer

TJC/TJC-Q Results Joint Work: TJC, TJC-Q Credits

* TJC
—no quadiree
—requires HW multiple render target support
—15M nodes
. TJC-Q Dale Beermann, Tamara Munzner, and Greg Humphreys.
Scalable, Robust Visualization of Large Trees.
Proc. EuroVis 2005
—5M nodes www.cs.virginia.edu/~gfx/pubs/TJC
* both support tree browsing only

—no comparison data structures

— lightweight quadtree

Outline PRISAD

trees * generic accordion drawing infrastructure

— el —handles many application types
sequences

— SequenceJuxtaposer - efficient

scaling up trees —guarantees of correctness: no overculling
-TJC —tight bounds on overdrawing

general AD framework « handles dense regions efficiently

= (PRl —new algorithms for rendering, culling, picking

power sets . « exploit application dataset characteristics instead
— PowerSetViewer of requiring expensive additional data structures
evaluation

PRISAD vs Application Interplay PRISAD Responsibilities

Application PRISAD
Layout

initializing a generic 2D grid structure

CES — split lines: both linear ordering and recursive hierarchy

Initialize

{Sx. Sy}
Gridding

Mapping

Screen-space St
ren

S ranges

Parition mapping geometric objects to world-space structures
partitioning a binary tree data structure into adjacent
Queue ranges
b) . . .
B Raesone control_llng drawing performance for progressive
rendering @

Application Responsibilities Example: PRITree

calculating the size of underlying rendering with generic infrastructure
PRISAD structures — partitioning

assigning dataset components to « rendering requires sub-pixel segments
PRISAD structures « partition split lines into leaf ranges

o . . . —seeding

Imtlat,lng, a rendermg action with two « 1st: roots of marked sub-trees, marked nodes
partitioning parameters « 2M: interaction box, remainder of leaf ranges
ordering the drawing of geometric — drawing

objects through seeding + ascent rendering from leaves to root

drawing individual geometric objects

Tree Partitioning Tree Seeding

» marked subtrees not drawn completely in first frame
— draw “skeleton” of marks for each subtree for landmarks
— solves guaranteed visibility of small subtree in big dataset

« divide leaf nodes by screen location
— partitioning follows split line hierarchy
— tree application provides stopping size criterion
—ranges [1,1]; [2,2]; [3,5] are partitions

Tree Drawing Traversal Leaf-range Gaps

» number of nodes rendered depends on

ascent-based drawing number of partitioned leaf ranges
— maximize leaf range size to reduce rendering

—partition into leaf ranges before drawing too much reduction results in gaps
* TreeJuxtaposer partitions during drawing
—start from 1 leaf per range, draw path to root
—carefully choose starting leaf
« 3 categories of misleading gaps eliminated
—leaf-range gaps
—horizontal tree edge gaps
—ascent path gaps

Eliminating Leaf-range Gaps Rendering Time Performance

« eliminate by rendering more leaves TreeJuxtaposer renders all nodes for star trees
— branching factor k leads to O(k) performance

we achieve 5x rendering improvement with contest
comparison dataset

constant time, after threshold, for large binary trees

— partition into smaller leaf ranges

‘T2 binay ——
T41 binary ——
T2 sar

+
x

trea sizs (millons of nodes)

Rendering Time Performance Memory Performance

« constant time, after threshold, for large binary trees + linear memory usage for both
— we approach rendering limit of screen-space

« contest and OpenDirectory comparison render 2 trees . .
— comparable to rendering two binary trees » marked range storage changes improve scalability
— 1GB difference for contest comparison

— generic AD approach 5x better

T42 binary ——
TH binary ——
Toz s

+ +
TJ2 contest X
FJ2 OpenDirectory

PRISAD Results Outline

» video trees
— TreeJuxtaposer

- . sequences
« joint work: PRISAD credits — SequenceJuxtaposer

. scaling up trees
James Slack, Kristian Hildebrand, and Tamara Munzner.

-TJC
PRISAD: A Part|lt|oned Rgndermg Infrastructure for general AD framework
Scalable Accordion Drawing.

. — PRISAD
Proc. InfoVis 2005, to appear
power sets

— PowerSetViewer
evaluation

PowerSetViewer

+ data mining market-basket transactions
—items bought together make a set

—space of all possible sets is power set
« place logged sets within enumeration of power set

Outline

trees

— TreeJuxtaposer
sequences

— SequenceJuxtaposer
scaling up trees
-TJC

general AD framework
— PRISAD

power sets

— PowerSetViewer
evaluation

Conclusion

« accordion drawing effective for variety
of application datasets
—trees, sequences, sets

 guaranteed visibility is powerful
technique

— computational expense can be handled by
generic algorithms

PSV Results

+ dynamic data

—show progress of steerable data mining
system with constraints

—all other AD applications had static data
 handles alphabets of up to 40,000
* handles log files of 1.5 to 7 million items
* joint work in progress with

— Qiang Kong, Raymond Ng

Evaluation

 how focus and context are used with
—rubber sheet navigation vs. pan and zoom
—integrated scene vs. separate overview

+ user studies of TJ
—tasks based on biologist interviews

* joint work in progress, with

— Adam Bodnar, Dmitry Nekrasovski, Joanna
McGrenere

More Information

* papers, videos, images
—www.cs.ubc.ca/~tmm

« free software
— olduvai.sourceforge.net/tj
— olduvai.sourceforge.net/sj

