InfoVis Group Research

Tamara Munzner
Department of Computer Science
University of British Columbia

CPSC 344 Outro
8 Nov 2023

www.cs.ubc.ca/~tmm/talks.html#344-outro23nov
Visualization defined & motivated

• computer-based visualization systems
 – provide visual representations of datasets
 – designed to help people carry out tasks more effectively.

• suitable when
 – there is a need to augment human capabilities
 – rather than replace people with computational decision-making methods
Nested model: Four levels of visualization design

• domain situation
 – who are the target users?

• abstraction
 – translate from specifics of domain to vocabulary of vis
 • what is shown? data abstraction
 • why is the user looking at it? task abstraction

• idiom
 – how is it shown?
 • visual encoding idiom: how to draw
 • interaction idiom: how to manipulate

• algorithm
 – efficient computation
Why is validation difficult?

- different ways to get it wrong at each level

Domain situation
- You misunderstood their needs

Data/task abstraction
- You’re showing them the wrong thing

Visual encoding/interaction idiom
- The way you show it doesn’t work

Algorithm
- Your code is too slow

Evaluation: broadly interpreted

- methods from many fields, qualitative & quantitative
 - controlled experiments in lab, field studies of deployed systems

anthropology/ethnography
design
computer science
HCI/psychology
anthropology/ethnography

- Domain situation
 Observe target users using existing tools

- Data/task abstraction
 - Visual encoding/interaction idiom
 Justify design with respect to alternatives
 - Algorithm
 Measure system time/memory
 Analyze computational complexity
 - Analyze results qualitatively
 - Measure human time with lab experiment (lab study)
 - Observe target users after deployment (field study)
 - Measure adoption

problem-driven work

technique-driven work

driven work

theoretical foundations

evaluation

quant
qual
mixed
Problem-driven work

• design studies
 – in collaboration with target users
 • real data, real tasks
 • intensive requirements analysis
 – iterative refinement
 • deploy tools/systems
 – typical evaluation: field studies
 • pre-design & post-deployment, often qualitative
 – opportunistic collaboration
 • many domains, industry & academia
Design studies: domains

• many domains
 – fisheries, in-car networks, journalism, ...

• genomics
 – Harvard Med School, BC Cancer, UBC Biodiversity, Agilent, ...

• log analysis
 – Google web search, AT&T web hosting, Mobify e-commerce
 – building & energy usage
Ocupado design study

Ocupado: Visualizing Location-Based Counts Over Time Across Buildings

Michael Oppermann
Tamara Munzner

https://youtu.be/KcwjVK8eUdw
Technique-driven work

• scalable algorithms & systems
 – typical evaluation: computational benchmarks

• new visual encoding & interaction techniques
 – typical evaluation: controlled experiments with people (quant)
 – typical evaluation: qualitative assessment

• areas
 – graph drawing, dimensionality reduction
 – human-in-the-loop curation/assessment of ML results
https://youtu.be/Lff398EEswM
Courses

• grad course CPSC 547: next offering Sep 2025
• new-ish ugrad course: CPSC 447
 – (first three years was CPSC 436V)
 – current offering
 https://www.students.cs.ubc.ca/~cs-447/23Jan/
 – current offering now (Sep 2023), then Jan 2025
 – 4th year majors course
 • theory: visualization foundations
 • tooling: D3.js
 • prereq: CPSC 310 (for JavaScript)
 • HCI not required, but very helpful
More info

- book (free through UBC library) http://www.cs.ubc.ca/~tmm/vadbook

www.cs.ubc.ca/~tmm/talks.html#344-outro23nov @tamaramunzner